Field programmable Gm-C array for wide frequency range bandpass filter applications

Author(s):  
E. Lebel ◽  
A. Assi ◽  
M. Sawan
2014 ◽  
Vol 6 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Yung-Wei Chen ◽  
Hung-Wei Wu ◽  
Yan-Kuin Su

In this paper, a new multi-layered triple-passband bandpass filter using embedded and stub-loaded stepped impedance resonators (SIRs) is proposed. The filter is designed to have triple-passband at 1.8, 2.4, and 3.5 GHz. The 1st and 2nd passbands (1.8/2.4 GHz) are simultaneously generated by controlling the impedance and length ratios of the embedded SIRs (on top layer). The 3rd passband (3.5 GHz) is generated by using the stub-loaded SIR (on bottom layer). Using the embedded SIR, the even modes can be tuned within very wide frequency range and without affecting the odd modes. Therefore, the design of multi-band filters with very close passbands can be easily achieved and having a high isolation between the passbands. The filter can provide the multi-path propagation to enhance the frequency response and achieving the compact circuit size. The measured results are in good agreement with the full-wave electromagnetic simulation results.


2018 ◽  
Vol 10 (8) ◽  
pp. 891-895 ◽  
Author(s):  
Lin-Ping Feng ◽  
Lei Zhu

AbstractIn this paper, a novel class of balun bandpass filters is presented on slot-line resonator (SLR) toward intrinsic balanced performance in amplitude and phase. The proposed balun filter consists of three inductive-coupled SLRs in the middle, one single-ended unbalanced port, and one balanced port with two terminals. According to the distinct field conversion from the slotline to the microstrip feeding line, good balanced performance in amplitude, and phase performance can be intrinsically realized over a wide frequency range. To validate the proposed technique, a prototype third-order balun filter is designed, fabricated, and measured. Both the simulated and measured results have demonstrated that the proposed balun filter can not only achieve good frequency selectivity but also exhibit intrinsic balanced performance in amplitude and phase.


1976 ◽  
Vol 19 (10) ◽  
pp. 1525-1526
Author(s):  
A. M. Fedorov ◽  
V. V. Krestovskii ◽  
V. S. Kiselev ◽  
S. A. Razumovskii ◽  
V. A. Shcheglov

2018 ◽  
Vol 60 (11) ◽  
pp. 1893-1900 ◽  
Author(s):  
V. A. Zhuravlev ◽  
V. I. Suslyaev ◽  
A. V. Zhuravlev ◽  
E. Yu. Korovin

Sign in / Sign up

Export Citation Format

Share Document