scholarly journals N-phase synchronization of asymmetric attractors in a ring of coupled chaotic circuits

Author(s):  
Takuya Nishimoto ◽  
Yoko Uwate ◽  
Yasuteru Hosokawa ◽  
Yoshifumi Nishio ◽  
Daniele Fournier-Prunaret
2020 ◽  
Vol 34 (09) ◽  
pp. 2050074
Author(s):  
Siyu Ma ◽  
Ping Zhou ◽  
Jun Ma ◽  
Chunni Wang

A variety of electric components can be used to bridge connection to the nonlinear circuits, and continuous pumping and consumption of energy are critical for voltage balance between the output end. The realization and stability of synchronization are mainly dependent on the physical properties of coupling channel, which can be built by using different electric components such as resistor, capacitor, induction coil and even memristor. In this paper, a memristive nonlinear circuit developed from Chua circuit is presented for investigation of synchronization, and capacitor, induction coil are jointed with resistor for building artificial synapse which connects one output of two identical memristive circuits. The capacitance and inductance of the coupling channel are carefully adjusted with slight step increase to estimate the threshold of coupling intensity supporting complete synchronization. As a result, the saturation gain method applied to realize the synchronization between chaotic circuits and physical mechanism is presented.


2000 ◽  
Vol 10 (10) ◽  
pp. 2391-2398 ◽  
Author(s):  
ANDRZEJ DABROWSKI ◽  
ZBIGNIEW GALIAS ◽  
MACIEJ OGORZAŁEK

Using numerical experiments we show that the phase synchronization concept enables better insight into the synchronization phenomena encountered in coupled nonlinear chaotic circuits. In some cases when the phase plot inspection does not allow to confirm synchrony such kind of behavior can be distinguished by inspection of the phase calculated using the analytic signal approach.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2286
Author(s):  
Yutaka Hara ◽  
Yoshifumi Jodai ◽  
Tomoyuki Okinaga ◽  
Masaru Furukawa

To investigate the optimum layouts of small vertical-axis wind turbines, a two-dimensional analysis of dynamic fluid body interaction is performed via computational fluid dynamics for a rotor pair in various configurations. The rotational speed of each turbine rotor (diameter: D = 50 mm) varies based on the equation of motion. First, the dependence of rotor performance on the gap distance (gap) between two rotors is investigated. For parallel layouts, counter-down (CD) layouts with blades moving downwind in the gap region yield a higher mean power than counter-up (CU) layouts with blades moving upwind in the gap region. CD layouts with gap/D = 0.5–1.0 yield a maximum average power that is 23% higher than that of an isolated single rotor. Assuming isotropic bidirectional wind speed, co-rotating (CO) layouts with the same rotational direction are superior to the combination of CD and CU layouts regardless of the gap distance. For tandem layouts, the inverse-rotation (IR) configuration shows an earlier wake recovery than the CO configuration. For 16-wind-direction layouts, both the IR and CO configurations indicate similar power distribution at gap/D = 2.0. For the first time, this study demonstrates the phase synchronization of two rotors via numerical simulation.


2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Dang Minh Nguyen ◽  
Muttikulangara Swaminathan Sanathanan ◽  
Jianmin Miao ◽  
David Fernandez Rivas ◽  
Claus-Dieter Ohl

2021 ◽  
Vol 17 (3) ◽  
pp. 134-139
Author(s):  
Wan-peng Zhang ◽  
Hong Wu ◽  
Wei-feng Zhou ◽  
Ying-xin Zhao ◽  
Zhi-yang Liu ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 159
Author(s):  
Almudena González ◽  
Manuel Santapau ◽  
Antoni Gamundí ◽  
Ernesto Pereda ◽  
Julián J. González

The present work aims to demonstrate the hypothesis that atonal music modifies the topological structure of electroencephalographic (EEG) connectivity networks in relation to tonal music. To this, EEG monopolar records were taken in musicians and non-musicians while listening to tonal, atonal, and pink noise sound excerpts. EEG functional connectivities (FC) among channels assessed by a phase synchronization index previously thresholded using surrogate data test were computed. Sound effects, on the topological structure of graph-based networks assembled with the EEG-FCs at different frequency-bands, were analyzed throughout graph metric and network-based statistic (NBS). Local and global efficiency normalized (vs. random-network) measurements (NLE|NGE) assessing network information exchanges were able to discriminate both music styles irrespective of groups and frequency-bands. During tonal audition, NLE and NGE values in the beta-band network get close to that of a small-world network, while during atonal and even more during noise its structure moved away from small-world. These effects were attributed to the different timbre characteristics (sounds spectral centroid and entropy) and different musical structure. Results from networks topographic maps for strength and NLE of the nodes, and for FC subnets obtained from the NBS, allowed discriminating the musical styles and verifying the different strength, NLE, and FC of musicians compared to non-musicians.


Sign in / Sign up

Export Citation Format

Share Document