Live Demonstration: Energy-Efficient Data Symbol Detection via Boosted Learning for Multi-Actuator Data Storage Systems

Author(s):  
Jiachen Xu ◽  
Ethan Chen ◽  
Vanessa Chen
2013 ◽  
Vol 5 (3) ◽  
pp. 34-54
Author(s):  
Shiow-Fen Hwang ◽  
Han-Huei Lin ◽  
Chyi-Ren Dow

In wireless sensor networks, due to limited energy, how to disseminate the event data in an energy-efficient way to allow sinks quickly querying and receiving the needed event data is a practical and important issue. Many studies about data dissemination have been proposed. However, most of them are not energy-efficient, especially in large-scale networks. Hence, in this paper the authors proposed an energy-efficient data dissemination scheme in large-scale wireless sensor networks. First, the authors design a data storage method which disseminates only a few amount event data by dividing the network into regions and levels, and thus reducing the energy consumption. Then, the authors develop an efficient sink query forwarding strategy by probability analysis so that a sink can query events easily according to its location to reduce the delay time of querying event data, as well as energy consumption. In addition, a simple and efficient maintenance mechanism is also provided. The simulation results show that the proposed scheme outperforms TTDD and LBDD in terms of the energy consumption and control overhead.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Jorge Puebla ◽  
Junyeon Kim ◽  
Kouta Kondou ◽  
Yoshichika Otani

2020 ◽  
Author(s):  
Antonios Makris ◽  
Konstantinos Tserpes ◽  
Giannis Spiliopoulos ◽  
Dimitrios Zissis ◽  
Dimosthenis Anagnostopoulos

Abstract Several modern day problems need to deal with large amounts of spatio-temporal data. As such, in order to meet the application requirements, more and more systems are adapting to the specificities of those data. The most prominent case is perhaps the data storage systems, that have developed a large number of functionalities to efficiently support spatio-temporal data operations. This work is motivated by the question of which of those data storage systems is better suited to address the needs of industrial applications. In particular, the work conducted, set to identify the most efficient data store system in terms of response times, comparing two of the most representative of the two categories (NoSQL and relational), i.e. MongoDB and PostgreSQL. The evaluation is based upon real, business scenarios and their subsequent queries as well as their underlying infrastructures and concludes in confirming the superiority of PostgreSQL in almost all cases with the exception of the polygon intersection queries. Furthermore, the average response time is radically reduced with the use of indexes, especially in the case of MongoDB.


Sign in / Sign up

Export Citation Format

Share Document