A Framework for Best-Effort Service Provisioning in Ad Hoc Networks

Author(s):  
Vitor Jesus ◽  
Rui L. Aguiar
2010 ◽  
Vol 01 (03) ◽  
pp. 166-171 ◽  
Author(s):  
Cynthia Jayapal ◽  
◽  
Sumathi Vembu ◽  
Arul Jothi Subramanium ◽  
◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-18 ◽  
Author(s):  
Shahrukh Khalid ◽  
Athar Mahboob ◽  
Choudhry Fahad Azim ◽  
Aqeel Ur Rehman

Ad hoc networks lack support of infrastructure and operate in a shared bandwidth wireless environment. Presently, such networks have been realized by various adaptations in Internet Protocol (IP) architecture which was developed for infrastructure oriented hierarchical networks. The IP architecture has its known problem and issues even in infrastructure settings, like IP address overloading, mobility, multihoming, and so forth. Therefore, when such architecture is implemented in ad hoc scenario the problems get multiplied. Due to this fact, ad hoc networks suffer from additional problems like IP address autoconfiguration, service provisioning, efficient bandwidth utilization, and node identification. In this paper we present IDHOCNET which is a novel implementation of service provisioning and application development framework in the ad hoc context. We illustrate a number of implemented features of the architecture which include IP address autoconfiguration, identification of nodes by using real world identifiers, IP based services support in ad hoc networks, and a new class of application known as ID based application. Moreover how identifiers can completely replace the IP addresses to run the IP based applications is shown. It is expected that this work will open new research horizons and paradigms for ad hoc networks.


2009 ◽  
pp. 2833-2842
Author(s):  
Winston K.G. Seah ◽  
Hwee-Xian Tan

Mobile ad hoc networks (MANETs) form a class of multi-hop wireless networks that can easily be deployed on-the-fly. These are autonomous systems that do not require existing infrastructure; each participating node in the network acts as a host as well as a packet-forwarding router. In addition to the difficulties experienced by conventional wireless networks, such as wireless interference, noise and obstructions from the environment, hidden/exposed terminal problems, and limited physical security, MANETs are also characterized by dynamically changing network topology and energy constraints. While MANETs were originally designed for use in disaster emergencies and defense-related applications, there are a number of potential applications of ad hoc networking that are commercially viable. Some of these applications include multimedia teleconferencing, home networking, embedded computing, electronic classrooms, sensor networks, and even underwater surveillance. The increased interest in MANETs in recent years has led to intensive research efforts which aim to provide quality of service (QoS) support over such infrastructure-less networks with unpredictable behaviour. Generally, the QoS of any particular network can be defined as its ability to deliver a guaranteed level of service to its users and/or applications. These service requirements often include performance metrics such as throughput, delay, jitter (delay variance), bandwidth, reliability, etc., and different applications may have varying service requirements. The performance metrics can be computed in three different ways: (i) concave (e.g., minimum bandwidth along each link); (ii) additive (e.g., total delay along a path); and (iii) multiplicative (e.g., packet delivery ratio along the entire route). While much effort has been invested in providing QoS in the Internet during the last decade, leading to the development of Internet QoS models such as integrated services (IntServ) (Braden, 1994) and differentiated services (DiffServ) (Blake, 1998), the Internet is currently able to provide only best effort (BE) QoS to its applications. In such networks with predictable resource availability, providing QoS beyond best effort is already a challenge. It is therefore even more difficult to achieve a BE-QoS similar to the Internet in networks like MANETs, which experience a vast spectrum of network dynamics (such as node mobility and link instability). In addition, QoS is only plausible in a MANET if it is combinatorially stable, i.e., topological changes occur slow enough to allow the successful propagation of updates throughout the network. As such, it is often debatable as to whether QoS in MANETs is just a myth or can become a reality.


Sign in / Sign up

Export Citation Format

Share Document