Three-Dimensional Gesture Tracking Algorithm Based on Microstructure of Hand Motion

Author(s):  
Min Fanwen ◽  
Feng Zhiquan
2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Hong-Min Zhu ◽  
Chi-Man Pun

We propose an adaptive and robust superpixel based hand gesture tracking system, in which hand gestures drawn in free air are recognized from their motion trajectories. First we employed the motion detection of superpixels and unsupervised image segmentation to detect the moving target hand using the first few frames of the input video sequence. Then the hand appearance model is constructed from its surrounding superpixels. By incorporating the failure recovery and template matching in the tracking process, the target hand is tracked by an adaptive superpixel based tracking algorithm, where the problem of hand deformation, view-dependent appearance invariance, fast motion, and background confusion can be well handled to extract the correct hand motion trajectory. Finally, the hand gesture is recognized by the extracted motion trajectory with a trained SVM classifier. Experimental results show that our proposed system can achieve better performance compared to the existing state-of-the-art methods with the recognition accuracy 99.17% for easy set and 98.57 for hard set.


2018 ◽  
Vol 33 (1) ◽  
pp. 92-98
Author(s):  
王 民 WANG Min ◽  
石新源 SHI Xin-yuan ◽  
王稚慧 WANG Zhi-hui ◽  
李泽洋 LI Ze-yang

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 756 ◽  
Author(s):  
Yeongyu Park ◽  
Joonbum Bae

Various wearable systems have been investigated to measure hand motion, but some challenges remain. Many systems require a calibration process to map sensor signals to actual finger joint angles by the principle of measuring the length change of the finger, or bending sensors. Also, few studies have investigated how to measure thumb motion accurately using the wearable systems. This paper proposes an exoskeleton system with linear Hall sensors to measure three-dimensional hand motion without a calibration process. The calibration process is avoided by measuring finger joint angles through an absolute rotation measurement. A new wearing method with lower parts underneath the hand joints and rubber bands is proposed to fix the structure to the hand and adapt it for various hand sizes. As the thumb has a complex biomechanical feature at carpometacarpal (CMC) joint, a new measuring method of the CMC joint is proposed to directly calculate the orientation of the metacarpal. The prototype of the thumb and index finger was manufactured, and the performance was verified experimentally by using an optical motion capture system.


2014 ◽  
Vol 513-517 ◽  
pp. 1261-1267
Author(s):  
Jia Hong He ◽  
Xiao Ming Zhang ◽  
Yong Heng Wang

The three-dimensional spatial target tracking based on wireless communication technology has attracted more and more attention due to its importance in the field of Internet of Things.However,there are still some problems including calculation overhead is too high and power consumption is too large.Thus,a distributed three-dimensional target tracking mechanism for the environment of the Internet of Things is proposed.The network structure in the algorithm uses spatial clustering structure, which includes two tier sleep scheduling mechanisms and unite cluster head mechanism. A spatial segmental linear fitting method is adopted to track the target,which have effectively reduced the network overhead and improved tracking efficiency. It also provides a scheduling strategy how to wake up the sensor node guarantee to continue tracking it,when the mobile target lost.Simulation results show that the algorithm is better than the existing target tracking algorithm in tracking efficiency and have a lower power consumption.


2012 ◽  
Vol 463-464 ◽  
pp. 1147-1150 ◽  
Author(s):  
Constantin Catalin Moldovan ◽  
Ionel Staretu

Object tracking in three dimensional environments is an area of research that has attracted a lot of attention lately, for its potential regarding the interaction between man and machine. Hand gesture detection and recognition, in real time, from video stream, plays a significant role in the human-computer interaction and, on the current digital image processing applications, this represent a difficult task. This paper aims to present a new method for human hand control in virtual environments, by eliminating the need of an external device currently used for hand motion capture and digitization. A first step in this direction would be the detection of human hand, followed by the detection of gestures and their use to control a virtual hand in a virtual environment.


Author(s):  
Xudong Zhang ◽  
Don B. Chaffin

In this paper we describe a new scheme for empirically investigating the effects of task factors on three-dimensional (3D) dynamic postures during seated reaching movements. The scheme relies on an underlying model that integrates two statistical procedures: (a) a regression description of the relationship between the time-varying hand location and postural angles to characterize the movement data and (b) a series of analyses of variance to test the hypothesized task effects using representative instantaneous postures. The use of this scheme is illustrated by an experiment that examines two generic task factors: hand motion direction and motion completion time. Results suggest that hand motion direction is a significant task factor in determining instantaneous postures, whereas a distinctive difference in the time to complete a motion does not appear to have a significant effect. We discuss the concept of an instantaneous posture and its utility in dynamic studies of movements, some insights into human reaching movement control strategy, and implications for the development of a 3D dynamic posture prediction model.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Li Yang ◽  
Danshi Sun ◽  
Haote Ruan

In order to overcome the problems of the traditional algorithm, such as the time-consuming execution of acquisition instructions, low signal tracking accuracy, and low signal capture accuracy, a global satellite positioning receiver acquisition and tracking algorithm based on UWB technology is designed in this study. On the basis of expounding the pulse generation method and working principle in UWB technology, this paper analyzes in detail the characteristics of UWB technology, such as antimultipath, low power consumption, and strong penetration. Then, on the basis of window function filtering, in the process of three-dimensional search of global satellite positioning signal, firstly, the satellite signal entering the GPS software receiver is processed by RF front-end mixing and AD sampling, and then, the signal tracking and navigation message solving are completed according to the relationship between the influence factor and Doppler frequency offset. The experimental results show that the execution time of the acquisition instruction of the proposed algorithm varies between 1129 ms and 1617 ms; the signal tracking accuracy ranges between 0.931 and 0.951, and the signal capture accuracy ranges between 93.3% and 95.6%, which proves that the proposed algorithm has achieved the design expectation.


Sign in / Sign up

Export Citation Format

Share Document