Proactive Allocation of Radio Resources to Enhance Service Continuity in Cellular Networks

Author(s):  
Nandish P. Kuruvatti ◽  
Sachinkumar Bavikatti Mallikarjun ◽  
Sai Charan Kusumapani ◽  
Hans D. Schotten
2021 ◽  
Author(s):  
◽  
Ankit Chopra

<p>The efficient allocation and use of radio resources is crucial for achieving the maximum possible throughput and capacity in wireless networks. The conventional strongest signal-based user association in cellular networks generally considers only the strength of the signal while selecting a BS, and ignores the level of congestion or load at it. As a consequence, some BSs tend to suffer from heavy load, while their adjacent BSs may carry only light load. This load imbalance severely hampers the network from fully utilizing the network capacity and providing fair services to users. In this thesis, we investigate the applicability of the preamble code sequence, which is mainly used for cell identification, as an implicit information indicator for load balancing in cellular networks. By exploiting the high auto-correlation and low cross-correlation property among preamble sequences, we propose distributed load balancing schemes that implicitly obtain information about the load status of BSs, for intelligent association control. This enables the new users to be attached to BSs with relatively low load in the long term, alleviating the problem of non-uniform user distribution and load imbalance across the network. Extensive simulations are performed with various user densities considering throughput fair and resource fair, as the resource allocation policies in each cell. It is observed that significant improvement in minimum throughput and fair user distribution is achieved by employing our proposed schemes, and preamble sequences can be effectively used as a leverage for better cell-site selection from the viewpoint of fairness provisioning. The load of the entire system is also observed to be balanced, which consequently enhances the capacity of the network, as evidenced by the simulation results.</p>


Author(s):  
Premi A ◽  
Rajakumar S

The rapid growth of machine-to-machine communications in cellular networks poses the challenge of meeting the various Quality-of-Service requirements of massive number of machine to machine communications devices with limited radio resources. In this study, we discuss the minimum resource allocation problem for M2M communications through 5G and beyond the cellular networks. Then, in 5G mobile networks we propose a TYDER based algorithm for allocation the radio resource. The next-generation network environment, associated with heterogeneous performance, is expected to include the networks of diverse types. This paper introduces the network Traffic Type-based Differentiated Reputation (TYDER) solution, which differentiates the data delivery process according to its type.This approach however requires creativity in the reduction of hardware and cost decrease in the plan of little cell base station.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Bing Fang ◽  
Zuping Qian ◽  
Wei Zhong ◽  
Wei Shao ◽  
Hong Xue

We study the coordinated precoding problem for device-to-device (D2D) communications underlay multiple-input multiple-output (MIMO) cellular networks. The system model considered here constitutes multiple D2D user pairs attempting to share the uplink radio resources of a cellular network. We first formulate the coordinated precoding problem for the D2D user pairs as a sum-rate maximization (SRM) problem, which is subject to a total interference power constraint imposed to protect the base station (BS) and individual transmit power budgets available for each D2D user pair. Since the formulated SRM problem is nonconvex in general, we reformulate it as a difference convex- (DC-) type programming problem, which can be iteratively solved by employing the famous successive convex approximation (SCA) method. Moreover, a proximal-point-based regularization approach is also pursued here to ensure the convergence of the proposed algorithm. Interestingly, the centralized precoding algorithm can also lend itself to a distributed implementation. By introducing a price-based interference management mechanism, we reformulate the coordinated precoding problem as a Stackelberg game. Then, a distributed precoding algorithm is developed based on the concept of Stackelberg equilibrium (SE). Finally, numerical simulations are also provided to demonstrate the proposed algorithms. Results show that our algorithms can converge fast to a satisfactory solution with guaranteed convergence.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Saba Qasim Jabbar ◽  
Dheyaa Jasim Kadhim ◽  
Yu Li

This work proposes a new video buffer framework (VBF) to acquire a favorable quality of experience (QoE) for video streaming in cellular networks. The proposed framework consists of three main parts: client selection algorithm, categorization method, and distribution mechanism. The client selection algorithm was named independent client selection algorithm (ICSA), which is proposed to select the best clients who have less interfering effects on video quality and recognize the clients’ urgency based on buffer occupancy level. In the categorization method, each frame in the video buffer is given a specific number for better estimation of the playout outage probability, so it can efficiently handle so many frames from different videos at different bitrates. Meanwhile, at the proposed distribution mechanism, a predetermined threshold value is selected for lower and upper levels of playout outage probability. Then, the control unit at the base station will distribute the radio resources and decide the minimum rate requirement based on clients’ urgency categories. Simulation results showed that the VBF grantees fairness of resources distribution among different clients within the same cellular network while minimizing the interruption duration and controlling the video buffer at an acceptable level. Also, the results showed that the system throughput of the proposed framework outperforms other existing algorithms such as playout buffer and discontinuous reception aware scheduling (PBDAS), maximum carrier-to-interface ratio (MAX-CIR), and proportional fair (PF) due to enhancing the quality of experience for video streaming by increasing the radio resources in fairness manner.


2021 ◽  
Author(s):  
◽  
Ankit Chopra

<p>The efficient allocation and use of radio resources is crucial for achieving the maximum possible throughput and capacity in wireless networks. The conventional strongest signal-based user association in cellular networks generally considers only the strength of the signal while selecting a BS, and ignores the level of congestion or load at it. As a consequence, some BSs tend to suffer from heavy load, while their adjacent BSs may carry only light load. This load imbalance severely hampers the network from fully utilizing the network capacity and providing fair services to users. In this thesis, we investigate the applicability of the preamble code sequence, which is mainly used for cell identification, as an implicit information indicator for load balancing in cellular networks. By exploiting the high auto-correlation and low cross-correlation property among preamble sequences, we propose distributed load balancing schemes that implicitly obtain information about the load status of BSs, for intelligent association control. This enables the new users to be attached to BSs with relatively low load in the long term, alleviating the problem of non-uniform user distribution and load imbalance across the network. Extensive simulations are performed with various user densities considering throughput fair and resource fair, as the resource allocation policies in each cell. It is observed that significant improvement in minimum throughput and fair user distribution is achieved by employing our proposed schemes, and preamble sequences can be effectively used as a leverage for better cell-site selection from the viewpoint of fairness provisioning. The load of the entire system is also observed to be balanced, which consequently enhances the capacity of the network, as evidenced by the simulation results.</p>


Sign in / Sign up

Export Citation Format

Share Document