Analysis of state of operation of asynchronous motor with stator slot frequency beat vibration

Author(s):  
Adam Biernat ◽  
Pawel Goralski
Keyword(s):  
2010 ◽  
Vol 4 (1) ◽  
pp. 8-15
Author(s):  
Azeddine Chaiba ◽  
◽  
Rachid Abdessemed ◽  
M. Lokmen Bendaas ◽  
◽  
...  

Author(s):  
Rano Gazieva ◽  
Sharafidin Aynakulov ◽  
Aziz Nigmatov ◽  
Barna Rakhmankulova ◽  
Otabek Khafizov ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2042
Author(s):  
Wojciech Kacalak ◽  
Igor Maciejewski ◽  
Dariusz Lipiński ◽  
Błażej Bałasz

A simulation model and the results of experimental tests of a vibration generator in applications for the hot-dip galvanizing process are presented. The parameters of the work of the asynchronous motor forcing the system vibrations were determined, as well as the degree of unbalance enabling the vibrations of galvanized elements weighing up to 500 kg to be forced. Simulation and experimental tests of the designed and then constructed vibration generator were carried out at different intensities of the unbalanced rotating mass of the motor. Based on the obtained test results, the generator operating conditions were determined at which the highest values of the amplitude of vibrations transmitted through the suspension system to the galvanized elements were obtained.


2016 ◽  
Vol 821 ◽  
pp. 288-294 ◽  
Author(s):  
George Juraj Stein ◽  
Peter Tobolka ◽  
Rudolf Chmúrny

A novel approach to vibration attenuation, based on the eddy current principle, is described. The combined effects of all magnetic forces acting in the oscillatory system attenuate frame vibrations and, concurrently, decrease the damped natural frequency. A mathematical model of the forces balance in the oscillatory system was derived before. Some experimental results from a mock-up machine frame excited by an asynchronous motor are presented.


Sign in / Sign up

Export Citation Format

Share Document