forced simulation
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2042
Author(s):  
Wojciech Kacalak ◽  
Igor Maciejewski ◽  
Dariusz Lipiński ◽  
Błażej Bałasz

A simulation model and the results of experimental tests of a vibration generator in applications for the hot-dip galvanizing process are presented. The parameters of the work of the asynchronous motor forcing the system vibrations were determined, as well as the degree of unbalance enabling the vibrations of galvanized elements weighing up to 500 kg to be forced. Simulation and experimental tests of the designed and then constructed vibration generator were carried out at different intensities of the unbalanced rotating mass of the motor. Based on the obtained test results, the generator operating conditions were determined at which the highest values of the amplitude of vibrations transmitted through the suspension system to the galvanized elements were obtained.


2021 ◽  
Author(s):  
Alex Megann ◽  
Jerome Chanut ◽  
Dave Storkey

<p>The eddy-permitting 1/4° resolution in NEMO has been known to suffer from significant numerical diapycnal mixing. This arises from truncations in the advection scheme, which causes spurious mixing of tracers where there are transient vertical motions from internal tides and near-inertial waves, as well as from computational modes associated with partly-resolved mesoscale features. Suppressing the near-gridscale noise by increasing the viscosity has been shown to offer a useful reduction in that contribution to numerical mixing, but does not have a significant effect on tides and inertial waves.</p><p>The z~ scheme replaces eulerian vertical tracer advection across the vertical coordinate surfaces, on time scales less than a few days, with displacements of the coordinate surfaces themselves, in a manner more consistent with the nearly adiabatic nature of near-inertial gravity waves and tides. This has been shown to give substantial reduction in numerical mixing in an idealised configuration, but has yet to be fully evaluated in a global ocean domain. It is shown, using a new prototype eORCA025 global NEMO configuration, that <strong>z~</strong> with the default filter timescales reduces the effective diapycnal diffusivity and temperature drifts by only about 10%. Preliminary results will be presented for the sensitivity of the numerical mixing to the z~ timescale and other parameters. The application of z~ to a tidally-forced simulation will also be discussed.</p>


2019 ◽  
Vol 66 (255) ◽  
pp. 83-96
Author(s):  
Yuta Katsuyama ◽  
Masaru Inatsu ◽  
Tatsuo Shirakawa

AbstractThe response of snowpack to a +2°C global warming relative to the present climate was estimated in Hokkaido, Japan, using a physical snowpack model driven by dynamically downscaled (DDS) data, after model evaluation. The evaluation revealed that the snowpack model successfully reproduced the height of snow cover (HS), snow water equivalent (SWE) and snow-covered days (SCDs), but had a moderate bias in the thickness ratios of melt form (MF) and hoar category (HC). The DDS-forced simulation predicted that the seasonal-maximum HS and SWE would decrease by 30–40% in the southwestern and eastern parts of Hokkaido due to a large decrease in snowfall during the accumulation period, and that the HS and SWE in the north would decrease, albeit not significantly due to uncertain atmospheric forcing. The number of SCDs in Hokkaido was predicted to decline by ~30 d. Additionally, ~50% of snowpack thickness during a season would be MF in most areas, whereas HC would be <50% all over Hokkaido.


2019 ◽  
Vol 42 (6) ◽  
pp. 558-574 ◽  
Author(s):  
Lav Kumar ◽  
Nishtha Agrawal ◽  
Vivek K. Pandey ◽  
Abhishek K. Rai ◽  
Shailendra K. Mishra ◽  
...  

2017 ◽  
Vol 10 (6) ◽  
pp. 2169-2199 ◽  
Author(s):  
James C. Orr ◽  
Raymond G. Najjar ◽  
Olivier Aumont ◽  
Laurent Bopp ◽  
John L. Bullister ◽  
...  

Abstract. The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.


2016 ◽  
Author(s):  
James C. Orr ◽  
Raymond G. Najjar ◽  
Olivier Aumount ◽  
Laurent Bopp ◽  
John L. Bullister ◽  
...  

Abstract. The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth System Models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) versus when integrated within fully coupled Earth System Models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled online to ocean circulation models, initialized with observational data or output from a model spin up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6 and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin up, preferably for 2000 years or more and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facililtate their implementation.


2016 ◽  
Vol 47 (5-6) ◽  
pp. 1807-1826 ◽  
Author(s):  
Julien Crétat ◽  
Sébastien Masson ◽  
Sarah Berthet ◽  
Guillaume Samson ◽  
Pascal Terray ◽  
...  

2012 ◽  
Vol 140 (10) ◽  
pp. 3300-3326 ◽  
Author(s):  
Xiaoming Sun ◽  
Ana P. Barros

Abstract The influence of large-scale forcing on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians was investigated using the Weather Research and Forecasting model (WRF). Two forcing datasets were employed: the North American Regional Reanalysis (NARR; 32 km × 32 km) and the NCEP Final Operational Global Analysis (NCEP FNL; 1° × 1°). Simulated fields were evaluated against rain gauge, radar, and satellite data; sounding observations; and the best track from the National Hurricane Center (NHC). Overall, the NCEP FNL forced simulation (WRF_FNL) captures storm structure and evolution more accurately than the NARR forced simulation (WRF_NARR), benefiting from the hurricane initialization scheme in the NCEP FNL. Further, the performance of WRF_NARR is also negatively affected by a previously documented low-level warm bias in NARR. These factors lead to excessive precipitation in the Piedmont region, delayed rainfall in Alabama, as well as spatially displaced and unrealistically extreme rainbands during its passage over the southern Appalachians. Spatial filtering of the simulated precipitation fields confirms that the storm characteristics inherited from the forcing are critical to capture the storm’s impact at local places. Compared with the NHC observations, the storm is weaker in both NARR and NCEP FNL (up to Δp ~ 5 hPa), yet it is persistently deeper in all WRF simulations forced by either dataset. The surface wind fields are largely overestimated. This is attributed to the underestimation of surface roughness length over land, leading to underestimation of surface drag, reducing low-level convergence, and weakening the dissipation of the simulated cyclone.


2005 ◽  
Vol 141 (3) ◽  
pp. 171-197 ◽  
Author(s):  
Roopak Sinha ◽  
Partha S. Roop ◽  
Bakhadyr Khoussainov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document