A technique for calculating the currents induced by geomagnetic storms on large high voltage power grids

Author(s):  
J. L. Gilbert ◽  
W. A. Radasky ◽  
E. B. Savage
2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Shinichi Watari ◽  
Satoko Nakamura ◽  
Yusuke Ebihara

AbstractWe need a typical method of directly measuring geomagnetically induced current (GIC) to compare data for estimating a potential risk of power grids caused by GIC. Here, we overview GIC measurement systems that have appeared in published papers, note necessary requirements, report on our equipment, and show several examples of our measurements in substations around Tokyo, Japan. Although they are located at middle latitudes, GICs associated with various geomagnetic disturbances are observed, such as storm sudden commencements (SSCs) or sudden impulses (SIs) caused by interplanetary shocks, geomagnetic storms including a storm caused by abrupt southward turning of strong interplanetary magnetic field (IMF) associated with a magnetic cloud, bay disturbances caused by high-latitude aurora activities, and geomagnetic variation caused by a solar flare called the solar flare effect (SFE). All these results suggest that GIC at middle latitudes is sensitive to the magnetospheric current (the magnetopause current, the ring current, and the field-aligned current) and also the ionospheric current.


2013 ◽  
Vol 8 (S300) ◽  
pp. 500-501
Author(s):  
Larisa Trichtchenko

AbstractCoronal mass ejections (CME) and associated interplanetary-propagated solar wind disturbances are the established causes of the geomagnetic storms which, in turn, create the most hazardous impacts on power grids. These impacts are due to the large geomagnetically induced currents (GIC) associated with variations of geomagnetic field during storms, which, flowing through the transformer windings, cause extra magnetisation. That can lead to transformer saturation and, in extreme cases, can result in power blackouts. Thus, it is of practical importance to study the solar causes of the large space weather events. This paper presents the example of the space weather chain for the event of 5-6 November 2001 and a table providing complete overview of the largest solar events during solar cycle 23 with their subsequent effects on interplanetary medium and on the ground. This compact overview can be used as guidance for investigations of the solar causes and their predictions, which has a practical importance in everyday life.


2016 ◽  
Vol 18 (10) ◽  
pp. 103042 ◽  
Author(s):  
T Coletta ◽  
R Delabays ◽  
I Adagideli ◽  
Ph Jacquod
Keyword(s):  
Ac Power ◽  

2020 ◽  
Vol 10 (2) ◽  
pp. 55-64
Author(s):  
Gebregiorgis Abraha ◽  
Tesfay Yemane ◽  
Tsegaye Kassa

In present work we analysed eight geomagnetic storm events in 2015/2016 and studied the possible influence of these events on Ethiopian power grids. The results showed that the majority of the forced power outages occurred in the period of the main phase of events and the recovery period of the geomagnetic storms. The geomagnetic storms are characterised by different indices and parameters such as the disturbance storm time (Dst) values, coronal mass ejection (CME) speed, solar wind speed (V sw) and interplanetary magnetic field (IMF-Bz) on the selected dates. In most cases the observed geomagnetic storms were produced by the CME-driven storms as they show a storm sudden commencement (SSCs) before the main storms, and also have the short recovery periods. The sudden jumps of the solar wind velocities and IMF-Bz are also consistent with occurrence of the CMEs. Moreover, this effect can be traced in changes of Earth magnetic field during geomagnetic storm and quiet days. The observed CME-driven storms can produce highly variable magnetic fields on the transformers and provide forced outages, however the studied outages have not been recognised as those one driven by a geomagnetic storm.


2021 ◽  
pp. 0958305X2110310
Author(s):  
Yongpei Wang ◽  
Chao Xu ◽  
Pinghong Yuan

China has built the world's largest power infrastructure. Those upgrading power grid facilities not only contribute to providing enough end-used energy for the world's factories, but also offering a basic guarantee for the clean strategy of Building a Beautiful China proposed by the Chinese government. The national grid system supported by extra-high voltage and ultra-high voltage grids as the backbone makes it possible for a non-dispatchable renewable energy source to be connected to the national grid and transmitted to terminal consumers in load centers. The aim of this paper is to test whether China's advanced power grids have played a positive role in promoting power generation of intermittent renewable energy source. A novel nonlinear estimation named panel smoothing transition regression is introduced to capture heterogeneous effects of grid-connecting renewable energy source across regions. The empirical results show that whereas power grid infrastructure generally enhances power generation of renewable energy source and consumption in energy bases and load centers, the effects change across different voltage levels of power grids. The extra-high voltage power grids show strong support for grid-connecting renewable energy source, while the effect of ultra-high voltage power grids is unexpectedly insignificant. The extra-high voltage power grids have not yet become the backbone of the national grid, which is the main reason for the inadequate grid-connected renewable energy source to the ultra-high voltage power grids, indicating the importance of upgrading the power grid infrastructure.


Author(s):  
Ciarán D. Beggan ◽  
Gemma S. Richardson ◽  
Orsi Baillie ◽  
Juliane Hübert ◽  
Alan W.P. Thomson

Significant geoelectric fields are produced by the interaction of rapidly varying magnetic fields with the conductive Earth, particularly during intense geomagnetic activity. Though usually harmless, large or sustained geoelectric fields can damage grounded infrastructure such as high-voltage transformers and pipelines via Geomagnetically Induced Currents (GICs). A key aspect of understanding the effects of space weather on grounded infrastructure is through the spatial and temporal variation of the geoelectric field. Globally, there are few long-term monitoring sites of the geoelectric field, so in 2012 measurements of the horizontal surface field were started at Lerwick, Eskdalemuir and Hartland observatories in the UK. Between 2012 and 2020, the maximum value of the geoelectric field observed was around 1 V/km in Lerwick, 0.5 V/km in Eskdalemuir and 0.1 V/km in Hartland during the March 2015 storm. These long-term observations also allow comparisons with models of the geoelectric field to be made.  We use the measurements to compute magnetotelluric impedance transfer functions at each observatory for periods from 20 to 30,000 seconds. These are then used to predict the geoelectric field at the observatory sites during selected storm times that match the recorded fields very well (correlation around 0.9). We also compute geoelectric field values from a thin-sheet model of Britain, accounting for the diverse geological and bathymetric island setting. We find the thin-sheet model captures the peak and phase of the band-passed geoelectric field reasonably well, with linear correlation of around 0.4 in general. From these two modelling approaches, we generate geoelectric field values for historic storms (March 1989 and October 2003) and find the estimates of past peak geoelectric fields of up to 1.75 V/km in Eskdalemuir. However, evidence from high voltage transformer GIC measurements during these storms suggests these estimates are likely to represent an underestimate of the true value. p, li { white-space: pre-wrap; }


2019 ◽  
Vol 35 (1) ◽  
pp. 423-445 ◽  
Author(s):  
Guo-Liang Ma ◽  
Qiang Xie ◽  
Andrew Whittaker

Ultra-high–voltage (UHV) power distribution systems are seeing increased use in the seismically active regions of developing world, including China, as backbone power grids are being built out over long distances. This paper presents a study of the seismic performance of a UHV power transformer. Construction details for a typical Chinese UHV power transformer are described. The seismic behavior of the UHV power transformer is evaluated numerically, including calculation of modal properties and response to design basis earthquake shaking. The amplification of ground motion to the points of attachment of the seismically vulnerable transformer bushings is characterized. Alternative configurations for the sidewall-mounted turrets are investigated to mitigate the dynamic response of the 1,100-kV bushing.


2019 ◽  
Vol 27 ◽  
pp. 533-539 ◽  
Author(s):  
F. García Ferré ◽  
A. Johansson ◽  
L. Herrmann ◽  
J. Korbel ◽  
T. Erford ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document