scholarly journals Geomagnetic storms and their impacts on Ethiopian power grid

2020 ◽  
Vol 10 (2) ◽  
pp. 55-64
Author(s):  
Gebregiorgis Abraha ◽  
Tesfay Yemane ◽  
Tsegaye Kassa

In present work we analysed eight geomagnetic storm events in 2015/2016 and studied the possible influence of these events on Ethiopian power grids. The results showed that the majority of the forced power outages occurred in the period of the main phase of events and the recovery period of the geomagnetic storms. The geomagnetic storms are characterised by different indices and parameters such as the disturbance storm time (Dst) values, coronal mass ejection (CME) speed, solar wind speed (V sw) and interplanetary magnetic field (IMF-Bz) on the selected dates. In most cases the observed geomagnetic storms were produced by the CME-driven storms as they show a storm sudden commencement (SSCs) before the main storms, and also have the short recovery periods. The sudden jumps of the solar wind velocities and IMF-Bz are also consistent with occurrence of the CMEs. Moreover, this effect can be traced in changes of Earth magnetic field during geomagnetic storm and quiet days. The observed CME-driven storms can produce highly variable magnetic fields on the transformers and provide forced outages, however the studied outages have not been recognised as those one driven by a geomagnetic storm.

2017 ◽  
Vol 14 (2) ◽  
pp. 17
Author(s):  
Anwar Santoso ◽  
Mamat Rahimat ◽  
Rasdewita Kesumaningrum ◽  
Siska Filawati

Space weather research is the principal activity at the Space Science Center, Lapan to learn characteristics and generator source of the space weather so that can mitigate its the impact on the Earth's environment as mandated in Law No. 21 Year 2013. One of them is the phenomenon of geomagnetic storms. Geomagnetic storms caused by the entry of solar wind together with the IMF Bz that leads to the south. The behavior of the solar wind parameters together with the IMF Bz before geomagnetic storms can determine the formation of geomagnetic storms that caused it. In spite that, by the solar wind parameters and IMF Bz behavior before geomagnetic storm can be estimated its intensity through the equation Dst * = 1.599 * Ptotal - 34.48. The result of this equation is obtained that the Dst minimum deviation between the raw data and the output of this equation to the geomagnetic storm events on March 17, 2013 is about of -2.51 nT or 1.9% and on the geomagnetic storm events on February 19, 2014 is about of 2.77 nT or 2, 5%. Thus, the equation Dst * = 1.599 * Ptotal - 34.48 is very good for the estimation of geomagnetic storms.


2019 ◽  
Vol 17 (43) ◽  
pp. 103-121
Author(s):  
Mais Mohammed Algbory ◽  
Najat Mohammed Rashed

Magnetosphere is a region of space surrounding Earth magnetic field, the formation of magnetosphere depends on many parameters such as; surface magnetic field of the planet, an ionized plasma stream (solar wind) and the ionization of the planetary upper atmosphere (ionosphere). The main objective of this research is to find the behavior of Earth's magnetosphere radius (Rmp) with respect to the effect of solar wind kinetic energy density (Usw), Earth surface magnetic field (Bo), and the electron density (Ne) of Earth's ionosphere for three years 2016, 2017 and 2018. Also the study provides the effect of solar activity for the same period during strong geomagnetic storms on the behavior of Rmp. From results we found that there are nonlinear relations between the (Rmp) and the three variables (Usw), (Bo) and (Ne). Also we found that during the strong geomagnetic storms there is a reduction in the radius of magnetosphere.


2006 ◽  
Vol 24 (12) ◽  
pp. 3383-3389 ◽  
Author(s):  
C.-C. Wu ◽  
R. P. Lepping

Abstract. We investigated geomagnetic activity which was induced by interplanetary magnetic clouds during the past four solar cycles, 1965–1998. We have found that the intensity of such geomagnetic storms is more severe in solar maximum than in solar minimum. In addition, we affirm that the average solar wind speed of magnetic clouds is faster in solar maximum than in solar minimum. In this study, we find that solar activity level plays a major role on the intensity of geomagnetic storms. In particular, some new statistical results are found and listed as follows. (1) The intensity of a geomagnetic storm in a solar active period is stronger than in a solar quiet period. (2) The magnitude of negative Bzmin is larger in a solar active period than in a quiet period. (3) Solar wind speed in an active period is faster than in a quiet period. (4) VBsmax in an active period is much larger than in a quiet period. (5) Solar wind parameters, Bzmin, Vmax and VBsmax are correlated well with geomagnetic storm intensity, Dstmin during a solar active period. (6) Solar wind parameters, Bzmin, and VBsmax are not correlated well (very poorly for Vmax) with geomagnetic storm intensity during a solar quiet period. (7) The speed of the solar wind plays a key role in the correlation of solar wind parameters vs. the intensity of a geomagnetic storm. (8) More severe storms with Dstmin≤−100 nT caused by MCs occurred in the solar active period than in the solar quiet period.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
V. Vasanth ◽  
S. Umapathy

A detailed investigation on geoeffectiveness of CMEs associated with DH-type-II bursts observed during 1997–2008 is presented. The collected sample events are divided into two groups based on their association with CMEs related to geomagnetic storms Dst ≤−50 nT, namely, (i) geoeffective events and (ii) nongeoeffective events. We found that the geoeffective events have high starting frequency, low ending frequency, long duration, wider bandwidth, energetic flares, and CMEs than nongeoeffective events. The geoeffective events are found to have intense geomagnetic storm with mean Dst index (−150 nT). There exists good correlation between the properties of CMEs and flares for geoeffective events, while no clear correlation exists for nongeoeffective events. There exists a weak correlation for geoeffective events between (i) CME speed and Dst index (R=-0.51) and good correlation between (i) CME speed and solar wind speed (R=0.60), (ii) Dst index and solar wind speed (R=-0.64), and (iii) Dst index and southward magnetic field component (Bz) (R=0.80). From our study we conclude that the intense and long duration southward magnetic field component (Bz) and fast solar wind speed are responsible for geomagnetic storms, and the geomagnetic storms weakly depend on CME speed. About 22% (50/230) of the DH-type-II bursts are associated with geomagnetic storms. Therefore the DH-type-II bursts associated with energetic flares and CMEs are good indicator of geomagnetic storms.


2020 ◽  
Author(s):  
Joseph Eggington ◽  
John Coxon ◽  
Robert Shore ◽  
Ravindra Desai ◽  
Lars Mejnertsen ◽  
...  

<p>Geomagnetic storms generate a complex and highly time-dependent response in the magnetosphere-ionosphere system. Enhancement in field-aligned currents (FACs) can be very localised, and so accurately predicting the stormtime response of the ionosphere is crucial in forecasting the potential impacts of a severe space weather event at a given location on the Earth. Global MHD simulations provide a means to model ionospheric conditions in real-time for a given geomagnetic storm, allowing direct comparison to space- and ground-based observations from which the observations can be placed in global context to better understand the physical drivers behind the system's response.                   </p><p>Using the Gorgon MHD code and driving with upstream data from the ACE spacecraft, we simulate the state of the magnetosphere-ionosphere system during a geomagnetic storm commencing on 3<sup>rd</sup> May 2014. To elucidate the characteristic timescales of the system response during this event, we adopt a novel approach originally applied by Shore et al. (2019) to ground magnetic field data from SuperMAG, and by Coxon et al. (2019) to FAC data from AMPERE. In this method the simulated FAC at each point on the ionospheric grid is cross-correlated with solar wind time-series for time lags of up to several hours, and the lag with the strongest correlation is identified.</p><p>From this we construct maps of the characteristic response timescale and strength of correlation in the ionosphere to IMF B<sub>y</sub> and B<sub>z</sub>, and interpret these results in terms of the varying stormtime FAC morphology by comparing the simulation results to observations by AMPERE and SuperMAG during this same event. Finally, we identify sources of asymmetry in the ionospheric response, such as that between day/night and north/south, relating these to asymmetries in magnetospheric dynamics such as magnetopause and magnetotail reconnection, and changes in global convection as the system reconfigures. This will reveal the importance of different aspects of magnetosphere-ionosphere system in influencing the coupling timescales, as well as the role of onset time in determining the potential impacts of a severe event.<br><br></p><p>References:</p><p>Shore, R. M., Freeman, M. P., Coxon, J. C., Thomas, E. G., Gjerloev, J. W., & Olsen, N. (2019). Spatial variation in the responses of the surface external and induced magnetic field to the solar wind. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA026543</p><p>Coxon, J. C., Shore, R. M., Freeman, M. P., Fear, R. C., Browett, S. D., Smith, A. W., et al. (2019). Timescales of Birkeland currents driven by the IMF. Geophysical Research Letters, 46, 7893– 7901. https://doi.org/10.1029/2018GL081658</p>


2020 ◽  
Author(s):  
Catalin Negrea ◽  
Costel Munteanu ◽  
Marius Echim

<p>The solar wind is one of the main drivers for the thermosphere-ionosphere, affecting both long-term trends and short-term variability. In this study, we investigate the global ionospheric impact of high-speed solar wind streams/corotating interaction regions (HSS/CIR). Ten such events are identified between December 1<sup>st</sup> 2007 and April 16<sup>th</sup> 2008, based on solar wind speed, density and magnetic field measurements. Each event triggered a geomagnetic storm, highlighted by the temporal evolution of the SYM-H and AE geomagnetic indices. The ionospheric response to these storms is investigated using 28 globally distributed ionosonde stations, providing NmF2 and hmF2 measurements. Spectral peaks associated with 27-, 13- and 9-day periodicities are identified at most locations, highlighting the global nature of the ionospheric response. The amplitude of the ionospheric diurnal variability is also shown to vary, to a large extent correlated with the HSS/CIR induced geomagnetic storms.</p>


2012 ◽  
Vol 2 (10) ◽  
pp. 1-3 ◽  
Author(s):  
Praveen Kumar Gupta ◽  
◽  
Puspraj Singh Puspraj Singh ◽  
Puspraj Singh Puspraj Singh ◽  
P. K. Chamadia P. K. Chamadia

2005 ◽  
Vol 23 (2) ◽  
pp. 609-624 ◽  
Author(s):  
K. E. J. Huttunen ◽  
J. Slavin ◽  
M. Collier ◽  
H. E. J. Koskinen ◽  
A. Szabo ◽  
...  

Abstract. Sudden impulses (SI) in the tail lobe magnetic field associated with solar wind pressure enhancements are investigated using measurements from Cluster. The magnetic field components during the SIs change in a manner consistent with the assumption that an antisunward moving lateral pressure enhancement compresses the magnetotail axisymmetrically. We found that the maximum variance SI unit vectors were nearly aligned with the associated interplanetary shock normals. For two of the tail lobe SI events during which Cluster was located close to the tail boundary, Cluster observed the inward moving magnetopause. During both events, the spacecraft location changed from the lobe to the magnetospheric boundary layer. During the event on 6 November 2001 the magnetopause was compressed past Cluster. We applied the 2-D Cartesian model developed by collier98 in which a vacuum uniform tail lobe magnetic field is compressed by a step-like pressure increase. The model underestimates the compression of the magnetic field, but it fits the magnetic field maximum variance component well. For events for which we could determine the shock normal orientation, the differences between the observed and calculated shock propagation times from the location of WIND/Geotail to the location of Cluster were small. The propagation speeds of the SIs between the Cluster spacecraft were comparable to the solar wind speed. Our results suggest that the observed tail lobe SIs are due to lateral increases in solar wind dynamic pressure outside the magnetotail boundary.


2021 ◽  
Author(s):  
Sujan Prasad Gautam ◽  
Ashok Silwal ◽  
Prakash Poudel ◽  
Monika Karki ◽  
Binod Adhikari ◽  
...  

2015 ◽  
Vol 4 (1) ◽  
pp. 1-18 ◽  
Author(s):  
M. Díaz-Michelena ◽  
R. Sanz ◽  
M. F. Cerdán ◽  
A. B. Fernández

Abstract. MOURA instrument is a three-axis magnetometer and gradiometer designed and developed for Mars MetNet Precursor mission. The initial scientific goal of the instrument is to measure the local magnetic field in the surroundings of the lander i.e. to characterize the magnetic environment generated by the remanent magnetization of the crust and the superimposed daily variations of the field produced either by the solar wind incidence or by the thermomagnetic variations. Therefore, the qualification model (QM) will be tested in representative scenarios like magnetic surveys on terrestrial analogues of Mars and monitoring solar events, with the aim to achieve some experience prior to the arrival to Mars. In this work, we present a practical first approach for calibration of the instrument in the laboratory; a finer correction after the comparison of MOURA data with those of a reference magnetometer located in San Pablo de los Montes (SPT) INTERMAGNET Observatory; and a comparative recording of a geomagnetic storm as a demonstration of the compliance of the instrument capabilities with the scientific objectives.


Sign in / Sign up

Export Citation Format

Share Document