An equivalent circuit model for Li-ion batteries used in energy storage systems in building environment

Author(s):  
Kaiyuan Li ◽  
King Jet Tseng
Author(s):  
Xiaowei Zhao ◽  
Guoyu Zhang ◽  
Lin Yang

A task that has to be solved for the application of batteries in vehicles with an electric drive train is the determination of the actual state-of-health (SOH) and state-of-charge (SOC) of the battery cells. In this paper, an on board strategy for estimating SOC and SOH of Li-ion batteries is proposed. The equivalent circuit model is used for both SOC and SOH estimations. In SOH algorithm, the estimated value of battery capacity not only reflects the aging degree of battery pack, but also provides information for SOC estimation. Meanwhile, the extended Kaiman filtering is used in SOC estimation. Because the performance of the equivalent circuit model will be better at small currents than at high currents, extended Kaiman filtering is substituted by Ampere-Hour counting when the absolute value of current is greater than a calibration value. The Digatron battery tester was used to evaluate the proposed estimation method, and results show that the estimation method has high accuracy and efficiency at ordinary temperatures.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3230 ◽  
Author(s):  
Fernando Ortenzi ◽  
Natascia Andrenacci ◽  
Manlio Pasquali ◽  
Carlo Villante

The objective proposed by the EU to drastically reduce vehicular CO2 emission for the years up to 2030 requires an increase of propulsion systems’ efficiency, and accordingly, the improvement their technology. Hybrid electric vehicles could have a chance of achieving this, by recovering energy during braking phases, running in pure electric mode and allowing the internal combustion engine to operate under better efficiency conditions, while maintaining traditionally expected vehicle performances (mileage, weight, available on-board volume, etc.). The energy storage systems for hybrid electric vehicles (HEVs) have different requirements than those designed for Battery Electric Vehicles (BEVs); high specific power is normally the most critical issue. Using Li-ion Batteries (LiBs) in the designing of on-board Energy Storage Systems (ESS) based only on power specifications gives an ESS with an energy capacity which is sufficient for vehicle requirements. The highest specific power LiBs are therefore chosen among those technologically available. All this leads to an ESS design that is strongly stressed over time, because current output is very high and very rapidly varies, during both traction and regeneration phases. The resulting efficiency of the ESS is correspondingly lowered, and LiBs lifetime can be relevantly affected. Such a problem can be overcome by adopting hybrid storage systems, coupling LiBs and UltraCapacitors (UCs); by properly dimensioning and controlling the ESS’ components, in fact, the current output of the batteries can be reduced and smoothed, using UCs during transients. In this paper, a simulation model, calibrated and validated on an engine testbed, has been used to evaluate the performances of a hybrid storage HEV microcar under different operative conditions (driving cycles, environment temperature and ESS State of Charge). Results show that the hybridization of the powertrain may reduce fuel consumption by up to 27%, while LiBs lifetime may be more than doubled.


Sign in / Sign up

Export Citation Format

Share Document