Studying the influence of coordinated ev charging on power system operating risk

Author(s):  
Mingzhi Zhang ◽  
Lingfeng Wang ◽  
Chunlin Guo
2018 ◽  
Vol 6 (6) ◽  
pp. 16-23
Author(s):  
Boris K. MAKSIMOV ◽  
◽  
Tat’yana G. KLIMOVA ◽  
Andrei V. ZHUKOV ◽  
Dmitrii M. DUBININ ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1545 ◽  
Author(s):  
Sara Deilami ◽  
S. M. Muyeen

The electrification of transportation has been developed to support energy efficiency and CO2 reduction. As a result, electric vehicles (EVs) have become more popular in the current transport system to create more efficient energy. In recent years, this increase in EVs as well as renewable energy resources (RERs) has led to a major issue for power system networks. This paper studies electrical vehicles (EVs) and their applications in the smart grid and provides practical solutions for EV charging strategies in a smart power system to overcome the issues associated with large-scale EV penetrations. The research first reviews the EV battery infrastructure and charging strategies and introduces the main impacts of uncontrolled charging on the power grid. Then, it provides a practical overview of the existing and future solutions to manage the large-scale integration of EVs into the network. The simulation results for two controlled strategies of maximum sensitivity selection (MSS) and genetic algorithm (GA) optimization are presented and reviewed. A comparative analysis was performed to prove the application and validity of the solution approaches. This also helps researchers with the application of the optimization approaches on EV charging strategies. These two algorithms were implemented on a modified IEEE 23 kV medium voltage distribution system with switched shunt capacitors (SSCs) and a low voltage residential network, including EVs and nonlinear EV battery chargers.


2015 ◽  
Vol 1092-1093 ◽  
pp. 345-351
Author(s):  
Cheng Lu ◽  
Xi Lin Zhang ◽  
Biao Long Su ◽  
Yi Jun Wang

The simulation of fault treatment performance for distribution automation systems and the key technologies of training systems are discussed in this paper, which include key technologies for basic platform, auxiliary decision-making analysis for grid faults, load-transfer analysis for power system operating mode, loop closing analysis for power system operating mode and distribution network training simulation and so on. The results of simulation of fault treatment performance for distribution automation systems and training systems operation show a good accuracy and effectiveness of the method.


2014 ◽  
Vol 953-954 ◽  
pp. 389-394 ◽  
Author(s):  
Jing Wen ◽  
Wen Ying Liu ◽  
Chang Xie

The random fluctuation and anti-peaking characteristics of wind power has brought new problems for the power system optimal dispatch. Based on the interaction characteristic of the load, this paper played the utility of interactive load which can help system consumers the positive and negative fluctuations of wind power, and considered interactive load as a scheduling resource into the traditional day-ahead scheduling model. Taking into account the effects of interactive load on system operating costs and power flow distribution, this paper established a generation scheduling model which the aim are both the system operating costs and network loss minimization in large-capacity wind power integrated system, and reformulated the multi-objective optimization problem into a single objective nonlinear programming problem by means of the fuzzy theory, and made the generation side and the demand side of the power grid can participate optimal allocation of resources, and provided a new ideas and methods for achieving source and load interactive in smart grid environment. The simulation on IEEE 30-bus system indicated this method can reduce system operating costs and network losses effectively, and improve wind power consumptive level as well as too.


Sign in / Sign up

Export Citation Format

Share Document