Research on Predicting the Short-term Output of Photovoltaic (PV) Based on Extreme Learning Machine Model and Improved Similar Day

Author(s):  
Yongmei Jiang ◽  
Yang Yang ◽  
Qiuxuan Wu ◽  
Xiaoni Chi ◽  
Jinzi Miao
2013 ◽  
Vol 860-863 ◽  
pp. 361-367 ◽  
Author(s):  
Yi Hui Zhang ◽  
He Wang ◽  
Zhi Jian Hu ◽  
Kai Wang ◽  
Yan Li ◽  
...  

This paper studied the short-term prediction of wind speed by means of wavelet decomposition and Extreme Learning Machine. Wind speed signal was decomposed into several sequences by wavelet decomposition to reduce the non-stationary. Secondly, the phase space reconstructed was used to mine sequences characteristics, and then an improved extreme learning machine model of each component was established. Finally, the results of each component forecast superimposed to get the final result. The simulation result verified that the hybrid model effectively improved the wind speed prediction accuracy.


2018 ◽  
Vol 53 ◽  
pp. 02009
Author(s):  
Wang Ting ◽  
Li Xueyong

As an important support for the development of the national economy, the power industry plays a role in ensuring economic operations. Time series prediction can process dynamic data, is widely used in economics and engineering, and especially is of great practical value in using historical data to predict future development. Under the guidance of extreme learning machine and time series theory, this paper applies the extreme learning machine to the study of time series, and builds a model for load forecasting research. Load forecasting plays an important role in power planning, affecting planning operation modes, power exchange schemes, etc., so load forecasting is very necessary in power planning. First, establish an extreme learning machine model; second, the short-term load forecasting is performed by different activation functions to verify the performance of the activation function.1 After empirical analysis, the activation function with the best predictive ability is obtained.


2018 ◽  
Vol 43 (3) ◽  
pp. 263-276 ◽  
Author(s):  
Zhongda Tian ◽  
Gang Wang ◽  
Shujiang Li ◽  
Yanhong Wang ◽  
Xiangdong Wang

In order to improve the prediction accuracy of short-term wind speed, a short-term wind speed prediction model based on artificial bee colony algorithm optimized error minimized extreme learning machine model is proposed. The extreme learning machine has the advantages of fast learning speed and strong generalization ability. But many useless neurons of incremental extreme learning machine have little influences on the final output and, at the same time, reduce the efficiency of the algorithm. The optimal parameters of the hidden layer nodes will make network output error of incremental extreme learning machine decrease with fast speed. Based on the error minimized extreme learning machine, artificial bee colony algorithm is introduced to optimize the parameters of the hidden layer nodes, decrease the number of useless neurons, reduce training and prediction error, achieve the goal of reducing the network complexity, and improve the efficiency of the algorithm. The error minimized extreme learning machine prediction model is constructed with the obtained optimal parameters. The stability and convergence property of artificial bee colony algorithm optimized error minimized extreme learning machine model are proved. The practical short-term wind speed time series is used as the research object and to verify the validity of the prediction model. Multi-step prediction simulation of short-term wind speed is carried out. Compared with other prediction models, simulation results show that the prediction model proposed in this article reduces the training time of the prediction model and decreases the number of hidden layer nodes. The prediction model has higher prediction accuracy and reliability performance, meanwhile improves the performance indicators.


Forecasting ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 460-477
Author(s):  
Sajjad Khan ◽  
Shahzad Aslam ◽  
Iqra Mustafa ◽  
Sheraz Aslam

Day-ahead electricity price forecasting plays a critical role in balancing energy consumption and generation, optimizing the decisions of electricity market participants, formulating energy trading strategies, and dispatching independent system operators. Despite the fact that much research on price forecasting has been published in recent years, it remains a difficult task because of the challenging nature of electricity prices that includes seasonality, sharp fluctuations in price, and high volatility. This study presents a three-stage short-term electricity price forecasting model by employing ensemble empirical mode decomposition (EEMD) and extreme learning machine (ELM). In the proposed model, the EEMD is employed to decompose the actual price signals to overcome the non-linear and non-stationary components in the electricity price data. Then, a day-ahead forecasting is performed using the ELM model. We conduct several experiments on real-time data obtained from three different states of the electricity market in Australia, i.e., Queensland, New South Wales, and Victoria. We also implement various deep learning approaches as benchmark methods, i.e., recurrent neural network, multi-layer perception, support vector machine, and ELM. In order to affirm the performance of our proposed and benchmark approaches, this study performs several performance evaluation metric, including the Diebold–Mariano (DM) test. The results from the experiments show the productiveness of our developed model (in terms of higher accuracy) over its counterparts.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Pak Kin Wong ◽  
Hang Cheong Wong ◽  
Chi Man Vong ◽  
Tong Meng Iong ◽  
Ka In Wong ◽  
...  

Effective air-ratio control is desirable to maintain the best engine performance. However, traditional air-ratio control assumes the lambda sensor located at the tail pipe works properly and relies strongly on the air-ratio feedback signal measured by the lambda sensor. When the sensor is warming up during cold start or under failure, the traditional air-ratio control no longer works. To address this issue, this paper utilizes an advanced modelling technique, kernel extreme learning machine (ELM), to build a backup air-ratio model. With the prediction from the model, a limited air-ratio control performance can be maintained even when the lambda sensor does not work. Such strategy is realized as fault tolerance control. In order to verify the effectiveness of the proposed fault tolerance air-ratio control strategy, a model predictive control scheme is constructed based on the kernel ELM backup air-ratio model and implemented on a real engine. Experimental results show that the proposed controller can regulate the air-ratio to specific target values within a satisfactory tolerance under external disturbance and the absence of air-ratio feedback signal from the lambda sensor. This implies that the proposed fault tolerance air-ratio control is a promising scheme to maintain air-ratio control performance when the lambda sensor is under failure or warming up.


Sign in / Sign up

Export Citation Format

Share Document