An error feedback model based adaptive controller for nonlinear systems

Author(s):  
Tea-Gyoo Lee ◽  
Uk-Youl Huh
1998 ◽  
Vol 37 (12) ◽  
pp. 335-342 ◽  
Author(s):  
Jacek Czeczot

This paper deals with the minimal-cost control of the modified activated sludge process with varying level of wastewater in the aerator tank. The model-based adaptive controller of the effluent substrate concentration, basing on the substrate consumption rate and manipulating the effluent flow rate outcoming from the aerator tank, is proposed and its performance is compared with conventional PI controller and open loop behavior. Since the substrate consumption rate is not measurable on-line, the estimation procedure on the basis of the least-square method is suggested. Finally, it is proved that cooperation of the DO concentration controller with the adaptive controller of the effluent substrate concentration allows the process to be operated at minimum costs (low consumption of aeration energy).


Author(s):  
Chenhui Yu ◽  
Fei Liao ◽  
Haibo Ji ◽  
Wenhua Wu

With the increasing requirement of Reynolds number simulation in wind tunnel tests, the cryogenic wind tunnel is considered as a feasible method to realize high Reynolds number. Characteristic model-based adaptive controller design method is introduced to flow field control problem of the cryogenic wind tunnel. A class of nonlinear multi-input multi-output (MIMO) system is given for theoretical research that is related to flow field control of the cryogenic wind tunnel. The characteristic model in the form of second-order time-varying difference equations is provided to represent the system. A characteristic model-based adaptive controller is also designed correspondingly. The stability analysis of the closed loop system composed of the characteristic model or the exact discrete-time model and the proposed controller is investigated respectively. Numerical simulation is presented to illustrate the effectiveness of this control method. The modeling and control problem based on characteristic model method for a class of MIMO system are studied and first applied to the cryogenic wind tunnel control field.


2011 ◽  
Vol 48-49 ◽  
pp. 17-20
Author(s):  
Chun Li Xie ◽  
Tao Zhang ◽  
Dan Dan Zhao ◽  
Cheng Shao

A design method of LS-SVM based stable adaptive controller is proposed for a class of nonlinear continuous systems with unknown nonlinear function in this paper. Due to the fact that the control law is derived based on the Lyapunov stability theory, the scheme can not only solve the tracking problem of this class of nonlinear systems, but also it can guarantee the asymptotic stability of the closed systems, which is superior to many LS-SVM based control schemes. The effectiveness of the proposed scheme is demonstrated by simulation results.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7438
Author(s):  
Yasin Asadi ◽  
Amirhossein Ahmadi ◽  
Sasan Mohammadi ◽  
Ali Moradi Amani ◽  
Mousa Marzband ◽  
...  

The universal paradigm shift towards green energy has accelerated the development of modern algorithms and technologies, among them converters such as Z-Source Inverters (ZSI) are playing an important role. ZSIs are single-stage inverters which are capable of performing both buck and boost operations through an impedance network that enables the shoot-through state. Despite all advantages, these inverters are associated with the non-minimum phase feature imposing heavy restrictions on their closed-loop response. Moreover, uncertainties such as parameter perturbation, unmodeled dynamics, and load disturbances may degrade their performance or even lead to instability, especially when model-based controllers are applied. To tackle these issues, a data-driven model-free adaptive controller is proposed in this paper which guarantees stability and the desired performance of the inverter in the presence of uncertainties. It performs the control action in two steps: First, a model of the system is updated using the current input and output signals of the system. Based on this updated model, the control action is re-tuned to achieve the desired performance. The convergence and stability of the proposed control system are proved in the Lyapunov sense. Experiments corroborate the effectiveness and superiority of the presented method over model-based controllers including PI, state feedback, and optimal robust linear quadratic integral controllers in terms of various metrics.


2000 ◽  
Vol 33 (10) ◽  
pp. 791-796 ◽  
Author(s):  
G. De Nicolao ◽  
L. Magni ◽  
R. Scattolini

Sign in / Sign up

Export Citation Format

Share Document