Five-level inverter for optimal excitation of SRM drive

Author(s):  
Sang-Hun Lee ◽  
Sung-Jun Park ◽  
Seok-Gyu Oh ◽  
Jin-Woo Ahn ◽  
Cheul-U Kim
Keyword(s):  
1999 ◽  
Vol 522 (2) ◽  
pp. 1079-1087 ◽  
Author(s):  
Brian F. Farrell ◽  
Petros J. Ioannou

Automatica ◽  
2021 ◽  
Vol 131 ◽  
pp. 109773
Author(s):  
Taeyoon Lee ◽  
Bryan D. Lee ◽  
Frank C. Park

2012 ◽  
Vol 393 (8) ◽  
pp. 757-765 ◽  
Author(s):  
Weston B. Struwe ◽  
Pauline M. Rudd

Abstract In this study, we investigated the potential of four different aminoquinoline (AQ) compounds as fluorescent labels for glycan analysis using hydrophilic interaction liquid chromatography (HILIC) and fluorescence detection (FLD). We confirmed the optimal excitation and emission wavelengths of 3-AQ and 6-AQ conjugated to glycan standards using three-dimensional fluorescent spectral scanning. The optimal excitation and emission wavelengths for 6-AQ were confirmed at λex=355 nm and λem=440 nm. We concluded that the optimal wavelengths for 3-AQ were λex=355 nm and λem=420 nm, which differed considerably from the wavelengths applied in previous reports. HILIC-FLD chromatograms using experimentally determined wavelengths were similar to 2-aminobenzamide controls, but the peak capacity and resolution differed significantly when published 3-AQ λex/em values were applied. Furthermore, we found that 5-AQ and 8-AQ labeled maltohexaose did not display any fluorescent pro\xadperties when used as a carbohydrate tag for HPLC analysis. Finally, we applied experimentally determined wavelengths to 3-AQ labeled N-glycans released from human IgG to illustrate changes in retention time as well as to demonstrate that AQ labeling is applicable to complex sample analysis via exoglycosidase sequencing.


Author(s):  
Xin-Qian Zheng ◽  
Xiao-Bo Zhou ◽  
Sheng Zhou

By solving unsteady Reynolds-averaged 2-D N-S equations discretized by a high-order scheme, the results showed that the disordered unsteady separated flow could be effectively controlled by periodic suction and blowing in a wide range of incidence, resulting in enhancement of time-averaged aerodynamic performances. The effects of unsteady excitation frequency, amplitude and excitation location were investigated in detail. The effective excitation frequency spans a wide spectrum and there is an optimal excitation frequency that is nearly equal to the Characteristic frequency of vortex shedding. Excitation amplitude exhibits a threshold value (nearly 10% in term of the ratio of maximum velocity of periodic suction and blowing to the velocity of free flow) and an optimal value (nearly 35%). The optimal excitation location is just upstream of the separation point. We also explored feasible unsteady actuators by utilizing upstream wake for constraining unsteady separation in axial flow compressors.


2021 ◽  
Author(s):  
Ming Xie ◽  
Yunpeng Jia ◽  
Ying Li ◽  
Xiaohua Cai ◽  
Kai Cao

Abstract Laser-induced fluorescence (LIF) is an effective, all-weather oil spill identification method that has been widely applied for oil spill monitoring. However, the distinguishability on oil types is seldom considered while selecting excitation wavelength. This study is intended to find the optimal excitation wavelength for fine-grained classification of refined oil pollutants using LIF by comparing the distinguishability of fluorometric spectra under various excitation wavelengths on some typical types of refined-oil samples. The results show that the fluorometric spectra of oil samples significantly vary under different excitation wavelengths, and the four types of oil applied in this study are most likely to be distinguished under the excitation wavelengths of 395 nm and 420 nm. This study is expected to improve the ability of oil types identification using LIF method without increasing time or other cost, and also provides theoretical basis for the development of portable LIF devices for oil spill identification.


Sign in / Sign up

Export Citation Format

Share Document