Hardware-in-the-Loop Setup for Low Voltage Modular Multilevel Converter Control Development

Author(s):  
Marc Rene Lotz ◽  
Mirko Kohn ◽  
Timur Oznur ◽  
Martin Konemund
2021 ◽  
Author(s):  
Aleksandr Viatkin ◽  
Mattia Ricco ◽  
Riccardo Mandrioli ◽  
Tamas Kerekes ◽  
Remus Teodorescu ◽  
...  

<div><div><div><p>A new Modular Multilevel Converter with Interleaved half-bridge Sub-Modules (ISM-MMC) is proposed in this paper. The ISM-MMC exhibits a higher modularity and scalability in terms of current ratings with respect to a conventional MMC, while preserves the typical voltage level adaptiveness. The ISM-MMC brings the known advantages of classical MMC to low-voltage, high-current applications making it a novel candidate for the sector of ultra-fast chargers for all types of electrical vehicles (EV). This advanced topology makes it possible to easily reach charging power of the EV charging system up to 4.5 MW and beyond with low-voltage supply. To operate the new converter, a hybrid modulation scheme that helps to exploit advantages of the interleaving scheme, is implemented, and explained in this paper. It has been verified that the typical MMC control methods are still applicable for ISM-MMC. A comparative study between classical MMC and ISM-MMC configurations in terms of output characteristics and efficiency is also given. Furthermore, it has been demonstrated that the number of ac voltage levels is synthetically multiplied by the number of interleaved half-bridge legs in submodules. Numerical simulations and Hardware-in-the-Loop tests are carried out to demonstrate the feasibility of the proposed topology and implemented modulation scheme.</p></div></div></div>


2021 ◽  
Author(s):  
Aleksandr Viatkin ◽  
Mattia Ricco ◽  
Riccardo Mandrioli ◽  
Tamas Kerekes ◽  
Remus Teodorescu ◽  
...  

<div><div><div><p>A new Modular Multilevel Converter with Interleaved half-bridge Sub-Modules (ISM-MMC) is proposed in this paper. The ISM-MMC exhibits a higher modularity and scalability in terms of current ratings with respect to a conventional MMC, while preserves the typical voltage level adaptiveness. The ISM-MMC brings the known advantages of classical MMC to low-voltage, high-current applications making it a novel candidate for the sector of ultra-fast chargers for all types of electrical vehicles (EV). This advanced topology makes it possible to easily reach charging power of the EV charging system up to 4.5 MW and beyond with low-voltage supply. To operate the new converter, a hybrid modulation scheme that helps to exploit advantages of the interleaving scheme, is implemented, and explained in this paper. It has been verified that the typical MMC control methods are still applicable for ISM-MMC. A comparative study between classical MMC and ISM-MMC configurations in terms of output characteristics and efficiency is also given. Furthermore, it has been demonstrated that the number of ac voltage levels is synthetically multiplied by the number of interleaved half-bridge legs in submodules. Numerical simulations and Hardware-in-the-Loop tests are carried out to demonstrate the feasibility of the proposed topology and implemented modulation scheme.</p></div></div></div>


Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 134 ◽  
Author(s):  
Muhammad Ali ◽  
Muhammad Khan ◽  
Jianming Xu ◽  
Muhammad Faiz ◽  
Yaqoob Ali ◽  
...  

This paper presents a comparative analysis of a new topology based on an asymmetric hybrid modular multilevel converter (AHMMC) with recently proposed multilevel converter topologies. The analysis is based on various parameters for medium voltage-high power electric traction system. Among recently proposed topologies, few converters have been analysed through simulation results. In addition, the study investigates AHMMC converter which is a cascade arrangement of H-bridge with five-level cascaded converter module (FCCM) in more detail. The key features of the proposed AHMMC includes: reduced switch losses by minimizing the switching frequency as well as the components count, and improved power factor with minimum harmonic distortion. Extensive simulation results and low voltage laboratory prototype validates the working principle of the proposed converter topology. Furthermore, the paper concludes with the comparison factors evaluation of the discussed converter topologies for medium voltage traction applications.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2257
Author(s):  
Dimitrios Vozikis ◽  
Fahad Alsokhiry ◽  
Grain Philip Adam ◽  
Yusuf Al-Turki

This paper proposes an enhanced modular multilevel converter as an alternative to the conventional half-bridge modular multilevel converter that employs a reduced number of medium-voltage cells, with the aim of improving waveforms quality in its AC and DC sides. Each enhanced modular multilevel converter arm consists of high-voltage and low-voltage chain-links. The enhanced modular multilevel converter uses the high-voltage chain-links based on medium-voltage half-bridge cells to synthesize the fundamental voltage using nearest level modulation. Although the low-voltage chain-links filter out the voltage harmonics from the voltage generated by the high-voltage chain-links, which are rough and stepped approximations of the fundamental voltage, the enhanced modular multilevel converter uses the nested multilevel concept to dramatically increase the number of voltage levels per phase compared to half-bridge modular multilevel converter. The aforementioned improvements are achieved at the cost of a small increase in semiconductor losses. Detailed simulations conducted in EMPT-RV and experimental results confirm the validity of the proposed converter.


Energies ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 935 ◽  
Author(s):  
Georgios Tsolaridis ◽  
Epameinondas Kontos ◽  
Sanjay Chaudhary ◽  
Pavol Bauer ◽  
Remus Teodorescu

2016 ◽  
Vol 16 (5) ◽  
pp. 1698-1705 ◽  
Author(s):  
Chongru Liu ◽  
Pengfei Tian ◽  
Yu Wang ◽  
Qi Guo ◽  
Xuehua Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document