Self-sustainable OFDM transmissions with smooth energy delivery

Author(s):  
Chien-Sheng Yang ◽  
Lav R. Varshney
Keyword(s):  
2020 ◽  
Vol 10 (14) ◽  
pp. 4761
Author(s):  
Milorad Papic ◽  
Svetlana Ekisheva ◽  
Eduardo Cotilla-Sanchez

Modern risk analysis studies of the power system increasingly rely on big datasets, either synthesized, simulated, or real utility data. Particularly in the transmission system, outage events have a strong influence on the reliability, resilience, and security of the overall energy delivery infrastructure. In this paper we analyze historical outage data for transmission system components and discuss the implications of nearby overlapping outages with respect to resilience of the power system. We carry out a risk-based assessment using North American Electric Reliability Corporation (NERC) Transmission Availability Data System (TADS) for the North American bulk power system (BPS). We found that the quantification of nearby unscheduled outage clusters would improve the response times for operators to readjust the system and provide better resilience still under the standard definition of N-1 security. Finally, we propose future steps to investigate the relationship between clusters of outages and their electrical proximity, in order to improve operator actions in the operation horizon.


Network ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 95-115
Author(s):  
Charithri Yapa ◽  
Chamitha de Alwis ◽  
Madhusanka Liyanage

Emergence of the Energy Internet (EI) demands restructuring of traditional electricity grids to integrate heterogeneous energy sources, distribution network management with grid intelligence and big data management. This paradigm shift is considered to be a breakthrough in the energy industry towards facilitating autonomous and decentralized grid operations while maximizing the utilization of Distributed Generation (DG). Blockchain has been identified as a disruptive technology enabler for the realization of EI to facilitate reliable, self-operated energy delivery. In this paper, we highlight six key directions towards utilizing blockchain capabilities to realize the envisaged EI. We elaborate the challenges in each direction and highlight the role of blockchain in addressing them. Furthermore, we summarize the future research directive in achieving fully autonomous and decentralized electricity distribution networks, which will be known as Energy Internet.


Sign in / Sign up

Export Citation Format

Share Document