M1 neural decoding of finger movements using a priori neural activities before movements

Author(s):  
Jong-Hoon Yoon ◽  
Kyung-Jin You ◽  
Marc H. Schieber ◽  
Nitish V. Thakor ◽  
Hyun-Chool Shin
2010 ◽  
Vol 22 (05) ◽  
pp. 351-365 ◽  
Author(s):  
Junpeng Zhang ◽  
Sarang S. Dalal ◽  
Srikantan S. Nagarajan ◽  
Dezhong Yao

In some cases, different brain regions give rise to strongly-coherent electrical neural activities. For example, pure tone evoked activations of the bilateral auditory cortices exhibit strong coherence. Conventional 2nd order statistics-based spatio-temporal algorithms, such as MUSIC (MUltiple SIgnal Classification) and beamforming encounter difficulties in localizing such activities. In this paper, we proposed a novel solution for this case. The key idea is to map the measurement data into a new data space through a transformation prior to the localization. The orthogonal complement of the lead field matrix for the region to be suppressed is generated as the transformation matrix. Using a priori knowledge or another independent imaging method, such as sLORETA (standard LOw REsolution brain electromagnetic TomogrAphy), the coherent source regions can be primarily identified. And then, in the transformed data space a conventional spatio-temporal method, such as MUSIC, can be used to accomplish the localization of the remaining coherent sources. Repeatedly applying the method will achieve localization of all the coherent sources. The algorithm was validated by simulation experiments as well as by the reconstructions of real bilateral auditory cortical coherent activities.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Thirza Dado ◽  
Yağmur Güçlütürk ◽  
Luca Ambrogioni ◽  
Gabriëlle Ras ◽  
Sander Bosch ◽  
...  

AbstractNeural decoding can be conceptualized as the problem of mapping brain responses back to sensory stimuli via a feature space. We introduce (i) a novel experimental paradigm that uses well-controlled yet highly naturalistic stimuli with a priori known feature representations and (ii) an implementation thereof for HYPerrealistic reconstruction of PERception (HYPER) of faces from brain recordings. To this end, we embrace the use of generative adversarial networks (GANs) at the earliest step of our neural decoding pipeline by acquiring fMRI data as participants perceive face images synthesized by the generator network of a GAN. We show that the latent vectors used for generation effectively capture the same defining stimulus properties as the fMRI measurements. As such, these latents (conditioned on the GAN) are used as the in-between feature representations underlying the perceived images that can be predicted in neural decoding for (re-)generation of the originally perceived stimuli, leading to the most accurate reconstructions of perception to date.


2010 ◽  
Vol 57 (3) ◽  
pp. 754-760 ◽  
Author(s):  
Hyun-Chool Shin ◽  
V. Aggarwal ◽  
S. Acharya ◽  
M.H. Schieber ◽  
N.V. Thakor

Author(s):  
D. E. Luzzi ◽  
L. D. Marks ◽  
M. I. Buckett

As the HREM becomes increasingly used for the study of dynamic localized phenomena, the development of techniques to recover the desired information from a real image is important. Often, the important features are not strongly scattering in comparison to the matrix material in addition to being masked by statistical and amorphous noise. The desired information will usually involve the accurate knowledge of the position and intensity of the contrast. In order to decipher the desired information from a complex image, cross-correlation (xcf) techniques can be utilized. Unlike other image processing methods which rely on data massaging (e.g. high/low pass filtering or Fourier filtering), the cross-correlation method is a rigorous data reduction technique with no a priori assumptions.We have examined basic cross-correlation procedures using images of discrete gaussian peaks and have developed an iterative procedure to greatly enhance the capabilities of these techniques when the contrast from the peaks overlap.


Author(s):  
H.S. von Harrach ◽  
D.E. Jesson ◽  
S.J. Pennycook

Phase contrast TEM has been the leading technique for high resolution imaging of materials for many years, whilst STEM has been the principal method for high-resolution microanalysis. However, it was demonstrated many years ago that low angle dark-field STEM imaging is a priori capable of almost 50% higher point resolution than coherent bright-field imaging (i.e. phase contrast TEM or STEM). This advantage was not exploited until Pennycook developed the high-angle annular dark-field (ADF) technique which can provide an incoherent image showing both high image resolution and atomic number contrast.This paper describes the design and first results of a 300kV field-emission STEM (VG Microscopes HB603U) which has improved ADF STEM image resolution towards the 1 angstrom target. The instrument uses a cold field-emission gun, generating a 300 kV beam of up to 1 μA from an 11-stage accelerator. The beam is focussed on to the specimen by two condensers and a condenser-objective lens with a spherical aberration coefficient of 1.0 mm.


2019 ◽  
Vol 4 (5) ◽  
pp. 878-892
Author(s):  
Joseph A. Napoli ◽  
Linda D. Vallino

Purpose The 2 most commonly used operations to treat velopharyngeal inadequacy (VPI) are superiorly based pharyngeal flap and sphincter pharyngoplasty, both of which may result in hyponasal speech and airway obstruction. The purpose of this article is to (a) describe the bilateral buccal flap revision palatoplasty (BBFRP) as an alternative technique to manage VPI while minimizing these risks and (b) conduct a systematic review of the evidence of BBFRP on speech and other clinical outcomes. A report comparing the speech of a child with hypernasality before and after BBFRP is presented. Method A review of databases was conducted for studies of buccal flaps to treat VPI. Using the principles of a systematic review, the articles were read, and data were abstracted for study characteristics that were developed a priori. With respect to the case report, speech and instrumental data from a child with repaired cleft lip and palate and hypernasal speech were collected and analyzed before and after surgery. Results Eight articles were included in the analysis. The results were positive, and the evidence is in favor of BBFRP in improving velopharyngeal function, while minimizing the risk of hyponasal speech and obstructive sleep apnea. Before surgery, the child's speech was characterized by moderate hypernasality, and after surgery, it was judged to be within normal limits. Conclusion Based on clinical experience and results from the systematic review, there is sufficient evidence that the buccal flap is effective in improving resonance and minimizing obstructive sleep apnea. We recommend BBFRP as another approach in selected patients to manage VPI. Supplemental Material https://doi.org/10.23641/asha.9919352


Addiction ◽  
1997 ◽  
Vol 92 (12) ◽  
pp. 1671-1698 ◽  
Author(s):  
Project Match Research Group
Keyword(s):  
A Priori ◽  

Sign in / Sign up

Export Citation Format

Share Document