COHERENT MEG/EEG SOURCE LOCALIZATION IN TRANSFORMED DATA SPACE

2010 ◽  
Vol 22 (05) ◽  
pp. 351-365 ◽  
Author(s):  
Junpeng Zhang ◽  
Sarang S. Dalal ◽  
Srikantan S. Nagarajan ◽  
Dezhong Yao

In some cases, different brain regions give rise to strongly-coherent electrical neural activities. For example, pure tone evoked activations of the bilateral auditory cortices exhibit strong coherence. Conventional 2nd order statistics-based spatio-temporal algorithms, such as MUSIC (MUltiple SIgnal Classification) and beamforming encounter difficulties in localizing such activities. In this paper, we proposed a novel solution for this case. The key idea is to map the measurement data into a new data space through a transformation prior to the localization. The orthogonal complement of the lead field matrix for the region to be suppressed is generated as the transformation matrix. Using a priori knowledge or another independent imaging method, such as sLORETA (standard LOw REsolution brain electromagnetic TomogrAphy), the coherent source regions can be primarily identified. And then, in the transformed data space a conventional spatio-temporal method, such as MUSIC, can be used to accomplish the localization of the remaining coherent sources. Repeatedly applying the method will achieve localization of all the coherent sources. The algorithm was validated by simulation experiments as well as by the reconstructions of real bilateral auditory cortical coherent activities.

2010 ◽  
Vol 22 (03) ◽  
pp. 239-248 ◽  
Author(s):  
Junpeng Zhang ◽  
Dezhong Yao

Beamformer is one of the main techniques for spatio-temporal neuroelectromagnetic source reconstruction. However, the classical Beamformer is extremely sensitive to strongly coherent sources, thereby encountering difficulty in localizing the highly correlated bilateral auditory cortices in auditory evoked field (AEF) or auditory steady state evoked potential. The multiple constrained minimum-variance Beamformer with coherent source region suppression (Beamformer-CS) can potentially overcome such difficulties. However, when coherent interferer is located close to the edges of the suppression region, Beamformer-CS has localization bias and the closer it is, the larger it will be. Here, we present an improved Beamformer-CS that can localize coherent sources with much less localization bias, especially in the case of the interferer close to the edges of the suppression region. First, based on approximate information about source energy distribution from other neuroimaging techniques, a region encompassing the coherent interfering sources is defined. Then, the dominant eigenvectors of the lead field matrix, weighted using source energy information obtained by other imaging method, for the suppression region is incorporated into Beamformer design as hard null constraints. Such weighting strategy is able to improve the localization performance. Simulation test shows that, compared to Beamformer-CS, the new weighting approach is of much smaller localization bias, sharper peak of the estimated sources, more robust against noise, and less sensitiveness to the number of the eigenvector components for the suppression region, as is also confirmed by real AEF data test.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 177
Author(s):  
Iliya Gritsenko ◽  
Michael Kovalev ◽  
George Krasin ◽  
Matvey Konoplyov ◽  
Nikita Stsepuro

Recently the transport-of-intensity equation as a phase imaging method turned out as an effective microscopy method that does not require the use of high-resolution optical systems and a priori information about the object. In this paper we propose a mathematical model that adapts the transport-of-intensity equation for the purpose of wavefront sensing of the given light wave. The analysis of the influence of the longitudinal displacement z and the step between intensity distributions measurements on the error in determining the wavefront radius of curvature of a spherical wave is carried out. The proposed method is compared with the traditional Shack–Hartmann method and the method based on computer-generated Fourier holograms. Numerical simulation showed that the proposed method allows measurement of the wavefront radius of curvature with radius of 40 mm and with accuracy of ~200 μm.


2012 ◽  
Vol 32 (4) ◽  
pp. 731-744 ◽  
Author(s):  
James FM Myers ◽  
Lula Rosso ◽  
Ben J Watson ◽  
Sue J Wilson ◽  
Nicola J Kalk ◽  
...  

This positron emission tomography (PET) study aimed to further define selectivity of [11C]Ro15-4513 binding to the GABARα5 relative to the GABARα1 benzodiazepine receptor subtype. The impact of zolpidem, a GABARα1-selective agonist, on [11C]Ro15-4513, which shows selectivity for GABARα5, and the nonselective benzodiazepine ligand [11C]flumazenil binding was assessed in humans. Compartmental modelling of the kinetics of [11C]Ro15-4513 time-activity curves was used to describe distribution volume ( VT) differences in regions populated by different GABA receptor subtypes. Those with low α5 were best fitted by one-tissue compartment models; and those with high α5 required a more complex model. The heterogeneity between brain regions suggested spectral analysis as a more appropriate method to quantify binding as it does not a priori specify compartments. Spectral analysis revealed that Zolpidem caused a significant VT decrease (~10%) in [11C]flumazenil, but no decrease in [11C]Ro15-4513 binding. Further analysis of [11C]Ro15-4513 kinetics revealed additional frequency components present in regions containing both α1 and α5 subtypes compared with those containing only α1. Zolpidem reduced one component (mean ± s.d.: 71% ± 41%), presumed to reflect α1-subtype binding, but not another (13% ± 22%), presumed to reflect α5. The proposed method for [11C]Ro15-4513 analysis may allow more accurate selective binding assays and estimation of drug occupancy for other nonselective ligands.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Rasmus Rydbirk ◽  
Jonas Folke ◽  
Kristian Winge ◽  
Susana Aznar ◽  
Bente Pakkenberg ◽  
...  

Abstract Evaluation of gene expression levels by reverse transcription quantitative real-time PCR (RT-qPCR) has for many years been the favourite approach for discovering disease-associated alterations. Normalization of results to stably expressed reference genes (RGs) is pivotal to obtain reliable results. This is especially important in relation to neurodegenerative diseases where disease-related structural changes may affect the most commonly used RGs. We analysed 15 candidate RGs in 98 brain samples from two brain regions from Alzheimer’s disease (AD), Parkinson’s disease (PD), Multiple System Atrophy, and Progressive Supranuclear Palsy patients. Using RefFinder, a web-based tool for evaluating RG stability, we identified the most stable RGs to be UBE2D2, CYC1, and RPL13 which we recommend for future RT-qPCR studies on human brain tissue from these patients. None of the investigated genes were affected by experimental variables such as RIN, PMI, or age. Findings were further validated by expression analyses of a target gene GSK3B, known to be affected by AD and PD. We obtained high variations in GSK3B levels when contrasting the results using different sets of common RG underlining the importance of a priori validation of RGs for RT-qPCR studies.


Author(s):  
Junxiao Wang ◽  
Shuqing Wang ◽  
Lei Zhang ◽  
Maogen Su ◽  
Duixiong Sun ◽  
...  

Abstract We proposed a theoretical spatio-temporal imaging method, which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model. By using the intensity formula, the integral intensity of spectral lines could be calculated and the corresponding images of intensity distribution could be drawn. Through further image processing such as normalization, determination of minimum intensity, combination and color filtering, a relatively clear species distribution image in the plasma could be obtained. Using the above method, we simulated the plasma ablated from Al-Mg alloy by different laser energies under 1 atm argon, and obtained the theoretical spatio-temporal distributions of Mg I, Mg II, Al I, Al II and Ar I species, which are almost consistent with the experimental results by differential imaging. Compared with the experimental decay time constants, the consistency is higher at low laser energy, indicating that our theoretical model is more suitable for the plasma dominated by laser-supported combustion wave.


2018 ◽  
Vol 11 (8) ◽  
pp. 3391-3407 ◽  
Author(s):  
Zacharias Marinou Nikolaou ◽  
Jyh-Yuan Chen ◽  
Yiannis Proestos ◽  
Jos Lelieveld ◽  
Rolf Sander

Abstract. Chemical mechanism reduction is common practice in combustion research for accelerating numerical simulations; however, there have been limited applications of this practice in atmospheric chemistry. In this study, we employ a powerful reduction method in order to produce a skeletal mechanism of an atmospheric chemistry code that is commonly used in air quality and climate modelling. The skeletal mechanism is developed using input data from a model scenario. Its performance is then evaluated both a priori against the model scenario results and a posteriori by implementing the skeletal mechanism in a chemistry transport model, namely the Weather Research and Forecasting code with Chemistry. Preliminary results, indicate a substantial increase in computational speed-up for both cases, with a minimal loss of accuracy with regards to the simulated spatio-temporal mixing ratio of the target species, which was selected to be ozone.


2002 ◽  
Vol 88 (1) ◽  
pp. 540-543 ◽  
Author(s):  
John J. Foxe ◽  
Glenn R. Wylie ◽  
Antigona Martinez ◽  
Charles E. Schroeder ◽  
Daniel C. Javitt ◽  
...  

Using high-field (3 Tesla) functional magnetic resonance imaging (fMRI), we demonstrate that auditory and somatosensory inputs converge in a subregion of human auditory cortex along the superior temporal gyrus. Further, simultaneous stimulation in both sensory modalities resulted in activity exceeding that predicted by summing the responses to the unisensory inputs, thereby showing multisensory integration in this convergence region. Recently, intracranial recordings in macaque monkeys have shown similar auditory-somatosensory convergence in a subregion of auditory cortex directly caudomedial to primary auditory cortex (area CM). The multisensory region identified in the present investigation may be the human homologue of CM. Our finding of auditory-somatosensory convergence in early auditory cortices contributes to mounting evidence for multisensory integration early in the cortical processing hierarchy, in brain regions that were previously assumed to be unisensory.


2014 ◽  
Vol 7 (11) ◽  
pp. 3783-3799 ◽  
Author(s):  
A. T. J. de Laat ◽  
I. Aben ◽  
M. Deeter ◽  
P. Nédélec ◽  
H. Eskes ◽  
...  

Abstract. Validation results from a comparison between Measurement Of Pollution In The Troposphere (MOPITT) V5 Near InfraRed (NIR) carbon monoxide (CO) total column measurements and Measurement of Ozone and Water Vapour on Airbus in-service Aircraft (MOZAIC)/In-Service Aircraft for a Global Observing System (IAGOS) aircraft measurements are presented. A good agreement is found between MOPITT and MOZAIC/IAGOS measurements, consistent with results from earlier studies using different validation data and despite large variability in MOPITT CO total columns along the spatial footprint of the MOZAIC/IAGOS measurements. Validation results improve when taking the large spatial footprint of the MOZAIC/IAGOS data into account. No statistically significant drift was detected in the validation results over the period 2002–2010 at global, continental and local (airport) scales. Furthermore, for those situations where MOZAIC/IAGOS measurements differed from the MOPITT a priori, the MOPITT measurements clearly outperformed the MOPITT a priori data, indicating that MOPITT NIR retrievals add value to the MOPITT a priori. Results from a high spatial resolution simulation of the chemistry-transport model MOCAGE (MOdèle de Chimie Atmosphérique à Grande Echelle) showed that the most likely explanation for the large MOPITT variability along the MOZAIC-IAGOS profile flight path is related to spatio-temporal CO variability, which should be kept in mind when using MOZAIC/IAGOS profile measurements for validating satellite nadir observations.


2014 ◽  
Vol 369 (1655) ◽  
pp. 20130473 ◽  
Author(s):  
Tobias Larsen ◽  
John P. O'Doherty

While there is a growing body of functional magnetic resonance imaging (fMRI) evidence implicating a corpus of brain regions in value-based decision-making in humans, the limited temporal resolution of fMRI cannot address the relative temporal precedence of different brain regions in decision-making. To address this question, we adopted a computational model-based approach to electroencephalography (EEG) data acquired during a simple binary choice task. fMRI data were also acquired from the same participants for source localization. Post-decision value signals emerged 200 ms post-stimulus in a predominantly posterior source in the vicinity of the intraparietal sulcus and posterior temporal lobe cortex, alongside a weaker anterior locus. The signal then shifted to a predominantly anterior locus 850 ms following the trial onset, localized to the ventromedial prefrontal cortex and lateral prefrontal cortex. Comparison signals between unchosen and chosen options emerged late in the trial at 1050 ms in dorsomedial prefrontal cortex, suggesting that such comparison signals may not be directly associated with the decision itself but rather may play a role in post-decision action selection. Taken together, these results provide us new insights into the temporal dynamics of decision-making in the brain, suggesting that for a simple binary choice task, decisions may be encoded predominantly in posterior areas such as intraparietal sulcus, before shifting anteriorly.


2007 ◽  
Vol 56 (8) ◽  
pp. 95-106 ◽  
Author(s):  
P. Grau ◽  
S. Beltrán ◽  
M. de Gracia ◽  
E. Ayesa

This paper proposes a new methodology for the automatic characterization of the influent wastewater in WWTP. With this methodology, model components are automatically estimated by means of optimization algorithms combining a-priori knowledge of the expected wastewater composition with experimental information from the available measurement data. The characterization is carried out based on an extended model components list in which components are described by means their elemental mass fractions. This allows an easy establishment of relationships between model components with experimental data and also, to obtain a general methodology applicable to any model used for wastewater biological treatments. The characterization of the wastewater influent of Galindo-Bilbao according this methodology has demonstrated its validity and the easy application to the ASM1 model influent characterization.


Sign in / Sign up

Export Citation Format

Share Document