A consideration on Adaptive Equalization Method with Noise Removal Function Based on Channel Estimation Using TLS Method

Author(s):  
Ryusuke Kono ◽  
Minoru Komatsu ◽  
Hiroki Matsumoto
Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2714 ◽  
Author(s):  
Lin Sun ◽  
Mei Wang ◽  
Guoheng Zhang ◽  
Haisen Li ◽  
Lan Huang

Filtered multitone (FMT) modulation divides the communication band into several subbands to shorten the span of symbols affected by multipath in underwater acoustic (UWA) communications. However, there is still intersymbol interference (ISI) in each subband of FMT modulation degrading communication performance. Therefore, ISI suppression techniques must be applied to FMT modulation UWA communications. The suppression performance of traditional adaptive equalization methods often exploited in FMT modulation UWA communications is limited when the effect of ISI spans tens of symbols or large constellation sizes are used. Turbo equalization consisting of adaptive equalization and channel decoding can improve equalization performance through information exchanging and iterative processes. To overcome the shortcoming of traditional minimum mean square error (MMSE) equalization and effectively suppress the ISI with relatively low computation complexity, an FMT modulation UWA communication using low-complexity channel-estimation-based (CE-based) MMSE turbo equalization is proposed in this paper. In the proposed method, turbo equalization is first exploited to suppress the ISI in FMT modulation UWA communications, and the equalizer coefficients of turbo equalization are adjusted using the low-complexity CE-based MMSE algorithm. The proposed method is analyzed in theory and verified by simulation analysis and real data collected in the experiment carried out in a pool with multipath propagation. The results demonstrate that the proposed method can achieve better communication performance with a higher bit rate than the FMT modulation UWA communication using traditional MMSE adaptive equalization.


2003 ◽  
Author(s):  
Tetsuya Okumura ◽  
Jun Akiyama ◽  
Shigemi Maeda ◽  
Takeshi Yamaguchi ◽  
Akira Takahashi

2019 ◽  
Vol 31 (05) ◽  
pp. 1950038
Author(s):  
Ayesha Amir Siddiqi ◽  
Ghous Bakhsh Narejo ◽  
Mashal Tariq ◽  
Adnan Hashmi

This piece of work investigates the application of histogram equalization method to clinical images for noise removal and efficient image enhancement without any information loss. Computed tomographic (CT) images of the abdomen bearing liver tumour are kept under study. Liver exhibits heterogeneous combination of intensities which makes it a challenging task to enhance the liver tumour embedded in the image. Distortion occurs due to the presence of quantum noise in the CT scans and important information of the image is suppressed. The methodology adopted in this paper comprises of two stages. Initially pixel based intensity transformation is adopted for de-noising the background of the image by the selection of appropriate threshold levels. The resultant image gives a noise free background and the foreground features are enhanced. In the next stage histogram equalization filters are applied to the transformed image. The equalization method which gives uniform image enhancement with lesser mean square error (MSE) and increased peak signal to noise ratio (PSNR) is supposed to be an effective method for efficient enhancement of the images. This study deals with the application of histogram equalization methods to CT images which can aid the radiologists for better visualization and diagnosis of the disease.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 379
Author(s):  
Lin Sun ◽  
Ming Yan ◽  
Haisen Li ◽  
Yanjie Xu

Underwater acoustic (UWA) sensor networks demand high-rate communications with high reliability between sensor nodes for massive data transmission. Filtered multitone (FMT) is an attractive multicarrier technique used in high-rate UWA communications, and can obviously shorten the span of intersymbol interference (ISI) with high spectral efficiency and low frequency offset sensitivity by dividing the communication band into several separated wide sub-bands without guard bands. The joint receive diversity and adaptive equalization scheme is often used as a general ISI suppression technique in FMT-UWA communications, but large receive array for high diversity gain has an adverse effect on the miniaturization of UWA sensor nodes. A time-reversal space-time block coding (TR-STBC) technique specially designed for frequency-selective fading channels can replace receive diversity with transmit diversity for high diversity gain, and therefore is helpful for ISI suppression with simple receive configuration. Moreover, the spatio-temporal matched filtering (MF) in TR-STBC decoding can mitigate ISI obviously, and therefore is of benefit to lessen the complexion of adaptive equalization for post-processing. In this paper, joint TR-STBC and adaptive equalization FMT-UWA communication method is proposed based on the merit of TR-STBC. The proposed method is analyzed in theory, and its performance is assessed using simulation analysis and real experimental data collected from an indoor pool communication trial. The validity of the proposed method is proved through comparing the proposed method with the joint single-input–single-output (SISO) and adaptive equalization method and the joint single-input–multiple-output (SIMO) and adaptive equalization method. The results show that the proposed method can achieve better communication performance than the joint SISO and adaptive equalization method, and can achieve similar performance with more simpler receive configuration as the joint SIMO and adaptive equalization method.


Sign in / Sign up

Export Citation Format

Share Document