Optimal Capacity Allocation Strategy and Economic Analysis of Grid Side-User Side Energy Storage System Based on Cooperative Game

Author(s):  
Lucheng Hong ◽  
Yankun Li ◽  
Ning Ding ◽  
Mian Rizwan
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Leijiao Ge ◽  
Shuai Zhang ◽  
Xingzhen Bai ◽  
Jun Yan ◽  
Changli Shi ◽  
...  

Energy storage systems (ESSs) are promising solutions for the mitigation of power fluctuations and the management of load demands in distribution networks (DNs). However, the uncertainty of load demands and wind generations (WGs) may have a significant impact on the capacity allocation of ESSs. To solve the problem, a novel optimal ESS capacity allocation scheme for ESSs is proposed to reduce the influence of uncertainty of both WG and load demands. First, an optimal capacity allocation model is established to minimize the ESS investment costs and the network power loss under constraints of DN and ESS operating points and power balance. Then, the proposed method reduces the uncertainty of load through a comprehensive demand response system based on time-of-use (TOU) and incentives. To predict the output of WGs, we combined particle swarm optimization (PSO) and backpropagation neural network to create a prediction model of the wind power. An improved simulated annealing PSO algorithm (ISAPSO) is used to solve the optimization problem. Numerical studies are carried out in a modified IEEE 33-node distribution system. Simulation results demonstrate that the proposed model can provide the optimal capacity allocation and investment cost of ESSs with minimal power losses.


2019 ◽  
Vol 31 (5) ◽  
pp. 860-869 ◽  
Author(s):  
Min-Su Kang ◽  
Young-Kwon Park ◽  
Kyung-Tae Kim

In this study, the optimal capacity of a battery and power conditioning system (PCS) of energy storage system were calculated. In addition, economic analysis was conducted to determine the optimal equipment standard, taking the government support plan into account. In addition, the changes in the power generation pattern were examined when the energy storage system and photovoltaic (PV) were connected to verify the power peak management efficiency of the energy storage system. Moreover, the effect of the energy storage system support policy was assessed by comparing the economic efficiency of single-PV equipment and energy storage system-connected equipment by the internal rate of return. Internal rate of return was analyzed by the change in cost of energy storage system equipment and the price of system marginal price/renewable energy certificate, which was a sales factor, and used for economic forecasting of the energy storage system. To accomplish this, the 2015 power generation output data (daily average 3.69 h power generation) of LG Hausys Ulsan station were converted to small-scale (3 MW) and large-scale (10 MW) solar power and a model that calculated the factor capacity of battery and the PCS capacity of the energy storage system was then constructed. Furthermore, the selected battery capacity and PCS capacity were analyzed separately by economic analysis to propose an energy storage system equipment standard, which could guarantee the optimal economic efficiency. Finally, based on the “Guideline for Management and Operation of Mandatory Supply for New and Renewable Energy” established by the Ministry of Commerce Industry and Energy, the profit model applied to the economic analysis was limited to an energy storage system charged from 10:00 to 16:00.


Sign in / Sign up

Export Citation Format

Share Document