A vision detection gastroscope robot with capsule structure and targeting medication module

Author(s):  
Tao Liu ◽  
Dan Liang ◽  
Yun Long Fu ◽  
Dong Tai Liang
Keyword(s):  
2021 ◽  
Vol 13 ◽  
pp. 175682932110048
Author(s):  
Huajun Song ◽  
Yanqi Wu ◽  
Guangbing Zhou

With the rapid development of drones, many problems have arisen, such as invasion of privacy and endangering security. Inspired by biology, in order to achieve effective detection and robust tracking of small targets such as unmanned aerial vehicles, a binocular vision detection system is designed. The system is composed of long focus and wide-angle dual cameras, servo pan tilt, and dual processors for detecting and identifying targets. In view of the shortcomings of spatio-temporal context target tracking algorithm that cannot adapt to scale transformation and easy to track failure in complex scenes, the scale filter and loss criterion are introduced to make an improvement. Qualitative and quantitative experiments show that the designed system can adapt to the scale changes and partial occlusion conditions in the detection, and meets the real-time requirements. The hardware system and algorithm both have reference value for the application of anti-unmanned aerial vehicle systems.


Weed Science ◽  
2020 ◽  
Vol 68 (5) ◽  
pp. 545-552
Author(s):  
Jialin Yu ◽  
Arnold W. Schumann ◽  
Shaun M. Sharpe ◽  
Xuehan Li ◽  
Nathan S. Boyd

AbstractSpot spraying POST herbicides is an effective approach to reduce herbicide input and weed control cost. Machine vision detection of grass or grass-like weeds in turfgrass systems is a challenging task due to the similarity in plant morphology. In this work, we explored the feasibility of using image classification with deep convolutional neural networks (DCNN), including AlexNet, GoogLeNet, and VGGNet, for detection of crabgrass species (Digitaria spp.), doveweed [Murdannia nudiflora (L.) Brenan], dallisgrass (Paspalum dilatatum Poir.), and tropical signalgrass [Urochloa distachya (L.) T.Q. Nguyen] in bermudagrass [Cynodon dactylon (L.) Pers.]. VGGNet generally outperformed AlexNet and GoogLeNet in detecting selected grassy weeds. For detection of P. dilatatum, VGGNet achieved high F1 scores (≥0.97) and recall values (≥0.99). A single VGGNet model exhibited high F1 scores (≥0.93) and recall values (1.00) that reliably detected Digitaria spp., M. nudiflora, P. dilatatum, and U. distachya. Low weed density reduced the recall values of AlexNet at detecting all weed species and GoogLeNet at detecting Digitaria spp. In comparison, VGGNet achieved excellent performances (overall accuracy = 1.00) at detecting all weed species in both high and low weed-density scenarios. These results demonstrate the feasibility of using DCNN for detection of grass or grass-like weeds in turfgrass systems.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1241
Author(s):  
Yakhyokhuja Valikhujaev ◽  
Akmalbek Abdusalomov ◽  
Young Im Cho

The technologies underlying fire and smoke detection systems play a crucial role in ensuring and delivering optimal performance in modern surveillance environments. In fact, fire can cause significant damage to lives and properties. Considering that the majority of cities have already installed camera-monitoring systems, this encouraged us to take advantage of the availability of these systems to develop cost-effective vision detection methods. However, this is a complex vision detection task from the perspective of deformations, unusual camera angles and viewpoints, and seasonal changes. To overcome these limitations, we propose a new method based on a deep learning approach, which uses a convolutional neural network that employs dilated convolutions. We evaluated our method by training and testing it on our custom-built dataset, which consists of images of fire and smoke that we collected from the internet and labeled manually. The performance of our method was compared with that of methods based on well-known state-of-the-art architectures. Our experimental results indicate that the classification performance and complexity of our method are superior. In addition, our method is designed to be well generalized for unseen data, which offers effective generalization and reduces the number of false alarms.


Sign in / Sign up

Export Citation Format

Share Document