Detection of grassy weeds in bermudagrass with deep convolutional neural networks

Weed Science ◽  
2020 ◽  
Vol 68 (5) ◽  
pp. 545-552
Author(s):  
Jialin Yu ◽  
Arnold W. Schumann ◽  
Shaun M. Sharpe ◽  
Xuehan Li ◽  
Nathan S. Boyd

AbstractSpot spraying POST herbicides is an effective approach to reduce herbicide input and weed control cost. Machine vision detection of grass or grass-like weeds in turfgrass systems is a challenging task due to the similarity in plant morphology. In this work, we explored the feasibility of using image classification with deep convolutional neural networks (DCNN), including AlexNet, GoogLeNet, and VGGNet, for detection of crabgrass species (Digitaria spp.), doveweed [Murdannia nudiflora (L.) Brenan], dallisgrass (Paspalum dilatatum Poir.), and tropical signalgrass [Urochloa distachya (L.) T.Q. Nguyen] in bermudagrass [Cynodon dactylon (L.) Pers.]. VGGNet generally outperformed AlexNet and GoogLeNet in detecting selected grassy weeds. For detection of P. dilatatum, VGGNet achieved high F1 scores (≥0.97) and recall values (≥0.99). A single VGGNet model exhibited high F1 scores (≥0.93) and recall values (1.00) that reliably detected Digitaria spp., M. nudiflora, P. dilatatum, and U. distachya. Low weed density reduced the recall values of AlexNet at detecting all weed species and GoogLeNet at detecting Digitaria spp. In comparison, VGGNet achieved excellent performances (overall accuracy = 1.00) at detecting all weed species in both high and low weed-density scenarios. These results demonstrate the feasibility of using DCNN for detection of grass or grass-like weeds in turfgrass systems.

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2020 ◽  
Vol 1712 ◽  
pp. 012015
Author(s):  
G. Geetha ◽  
T. Kirthigadevi ◽  
G.Godwin Ponsam ◽  
T. Karthik ◽  
M. Safa

Sign in / Sign up

Export Citation Format

Share Document