6.4 A 180mW 56Gb/s DSP-Based Transceiver for High Density IOs in Data Center Switches in 7nm FinFET Technology

Author(s):  
Tamer Ali ◽  
Ramy Yousry ◽  
Henry Park ◽  
Ehung Chen ◽  
Po-Shuan Weng ◽  
...  
Keyword(s):  
2018 ◽  
Vol 65 (10) ◽  
pp. 1395-1399 ◽  
Author(s):  
Gyu-Seob Jeong ◽  
Jeongho Hwang ◽  
Hong-Seok Choi ◽  
Hyungrok Do ◽  
Daehyun Koh ◽  
...  

Author(s):  
Gautham Thirunavakkarasu ◽  
Satyam Saini ◽  
Jimil Shah ◽  
Dereje Agonafer

The percentage of the energy used by data centers for cooling their equipment has been on the rise. With that, there has been a necessity for exploring new and more efficient methods like airside economization, both from an engineering as well as business point of view, to contain this energy demand. Air cooling especially, free air cooling has always been the first choice for IT companies to cool their equipment. But, it has its downside as well. As per ASHRAE standard (2009b), the air which is entering the data center should be continuously filtered with MERV 11 or preferably MERV 13 filters and the air which is inside the data center should be clean as per ISO class 8. The objective of this study is to design a model data center and simulate the flow path with the help of 6sigma room analysis software. A high-density data center was modelled for both hot aisle and cold aisle containment configurations. The particles taken into consideration for modelling were spherical in shape and of diameters 0.05, 0.1 and 1 micron. The physical properties of the submicron particles have been assumed to be same as that of air. For heavier particles of 1 micron in size, the properties of dense carbon particle are chosen for simulating particulate contamination in a data center. The Computer Room Air Conditioning unit is modelled as the source for the particulate contaminants which represents contaminants entering along with free air through an air-side economizer. The data obtained from this analysis can be helpful in predicting which type of particles will be deposited at what location based on its distance from the source and weight of the particles. This can further help in reinforcing the regions with a potential to fail under particulate contamination.


2020 ◽  
Vol 168 ◽  
pp. 106495
Author(s):  
Xiaolei Yuan ◽  
Xinjie Xu ◽  
Jinxiang Liu ◽  
Yiqun Pan ◽  
Risto Kosonen ◽  
...  

Author(s):  
Ratnesh Sharma ◽  
Rocky Shih ◽  
Chandrakant Patel ◽  
John Sontag

Data centers are the computational hub of the next generation. Rise in demand for computing has driven the emergence of high density datacenters. With the advent of high density, mission-critical datacenters, demand for electrical power for compute and cooling has grown. Deployment of a large number of high powered computer systems in very dense configurations in racks within data centers will result in very high power densities at room level. Hosting business and mission-critical applications also demand a high degree of reliability and flexibility. Managing such high power levels in the data center with cost effective reliable cooling solutions is essential to feasibility of pervasive compute infrastructure. Energy consumption of data centers can also be severely increased by over-designed air handling systems and rack layouts that allow the hot and cold air streams to mix. Absence of rack level temperature monitoring has contributed to lack of knowledge of air flow patterns and thermal management issues in conventional data centers. In this paper, we present results from exploratory data analysis (EDA) of rack-level temperature data collected over a period of several months from a conventional production datacenter. Typical datacenters experience surges in power consumption due to rise and fall in compute demand. These surges can be long term, short term or periodic, leading to associated thermal management challenges. Some variations may also be machine-dependent and vary across the datacenter. Yet other thermal perturbations may be localized and momentary. Random variations due to sensor response and calibration, if not identified, may lead to erroneous conclusions and expensive faults. Among other indicators, EDA techniques also reveal relationships among sensors and deployed hardware in space and time. Identification of such patterns can provide significant insight into data center dynamics for future forecasting purposes. Knowledge of such metrics enables energy-efficient thermal management by helping to create strategies for normal operation and disaster recovery for use with techniques like dynamic smart cooling.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6147
Author(s):  
Jinkyun Cho ◽  
Jesang Woo ◽  
Beungyong Park ◽  
Taesub Lim

Removing heat from high-density information technology (IT) equipment is essential for data centers. Maintaining the proper operating environment for IT equipment can be expensive. Rising energy cost and energy consumption has prompted data centers to consider hot aisle and cold aisle containment strategies, which can improve the energy efficiency and maintain the recommended level of inlet air temperature to IT equipment. It can also resolve hot spots in traditional uncontained data centers to some degree. This study analyzes the IT environment of the hot aisle containment (HAC) system, which has been considered an essential solution for high-density data centers. The thermal performance was analyzed for an IT server room with HAC in a reference data center. Computational fluid dynamics analysis was conducted to compare the operating performances of the cooling air distribution systems applied to the raised and hard floors and to examine the difference in the IT environment between the server rooms. Regarding operating conditions, the thermal performances in a state wherein the cooling system operated normally and another wherein one unit had failed were compared. The thermal performance of each alternative was evaluated by comparing the temperature distribution, airflow distribution, inlet air temperatures of the server racks, and recirculation ratio from the outlet to the inlet. In conclusion, the HAC system with a raised floor has higher cooling efficiency than that with a hard floor. The HAC with a raised floor over a hard floor can improve the air distribution efficiency by 28%. This corresponds to 40% reduction in the recirculation ratio for more than 20% of the normal cooling conditions. The main contribution of this paper is that it realistically implements the effectiveness of the existing theoretical comparison of the HAC system by developing an accurate numerical model of a data center with a high-density fifth-generation (5G) environment and applying the operating conditions.


Author(s):  
Pramod Kumar ◽  
Vikneshan Sundaralingam ◽  
Yogendra Joshi ◽  
Michael K. Patterson ◽  
Robin Steinbrecher ◽  
...  

In this paper we experimentally investigate the effect of supply air temperature on rack cooling in a high density raised floor data center facility. A series of experiments are performed on a 42 U (1-U = 4.45 cm) rack populated with 1-U servers. Desired rack heat loads are achieved by managing the distribution of server compute load within the rack. During the present experiments, temperatures at various locations in the hot and cold aisle corresponding to the rack air inlet and outlet are recorded. The temperatures are measured using a grid consisting of 256 thermocouples. The temperature measurements are further complimented with the flow field at the rack inlet. Particle Image Velocimetry (PIV) technique is used to capture the flow field at the rack inlet. The temperature maps in concert with the PIV flow field help in quantifying the rack cooling effectiveness. The temperature and flow measurements are measured for various cases by altering the supply air temperatures and perforated tile flow rates. The results are analyzed and compared with the ASHRARE recommended guidelines to arrive at the optimum supply air temperature. A perceptible change in the temperature and flow distribution is observed for the six cases investigated.


Author(s):  
Magnus K. Herrlin ◽  
Michael K. Patterson

Increased Information and Communications Technology (ICT) capability and improved energy-efficiency of today’s server platforms have created opportunities for the data center operator. However, these platforms also test the ability of many data center cooling systems. New design considerations are necessary to effectively cool high-density data centers. Challenges exist in both capital costs and operational costs in the thermal management of ICT equipment. This paper details how air cooling can be used to address both challenges to provide a low Total Cost of Ownership (TCO) and a highly energy-efficient design at high heat densities. We consider trends in heat generation from servers and how the resulting densities can be effectively cooled. A number of key factors are reviewed and appropriate design considerations developed to air cool 2000 W/ft2 (21,500 W/m2). Although there are requirements for greater engineering, such data centers can be built with current technology, hardware, and best practices. The density limitations are shown primarily from an airflow management and cooling system controls perspective. Computational Fluid Dynamics (CFD) modeling is discussed as a key part of the analysis allowing high-density designs to be successfully implemented. Well-engineered airflow management systems and control systems designed to minimize airflow by preventing mixing of cold and hot airflows allow high heat densities. Energy efficiency is gained by treating the whole equipment room as part of the airflow management strategy, making use of the extended environmental ranges now recommended and implementing air-side air economizers.


Sign in / Sign up

Export Citation Format

Share Document