Effect of Supply Air Temperature on Rack Cooling in a High Density Raised Floor Data Center Facility

Author(s):  
Pramod Kumar ◽  
Vikneshan Sundaralingam ◽  
Yogendra Joshi ◽  
Michael K. Patterson ◽  
Robin Steinbrecher ◽  
...  

In this paper we experimentally investigate the effect of supply air temperature on rack cooling in a high density raised floor data center facility. A series of experiments are performed on a 42 U (1-U = 4.45 cm) rack populated with 1-U servers. Desired rack heat loads are achieved by managing the distribution of server compute load within the rack. During the present experiments, temperatures at various locations in the hot and cold aisle corresponding to the rack air inlet and outlet are recorded. The temperatures are measured using a grid consisting of 256 thermocouples. The temperature measurements are further complimented with the flow field at the rack inlet. Particle Image Velocimetry (PIV) technique is used to capture the flow field at the rack inlet. The temperature maps in concert with the PIV flow field help in quantifying the rack cooling effectiveness. The temperature and flow measurements are measured for various cases by altering the supply air temperatures and perforated tile flow rates. The results are analyzed and compared with the ASHRARE recommended guidelines to arrive at the optimum supply air temperature. A perceptible change in the temperature and flow distribution is observed for the six cases investigated.

2004 ◽  
Vol 126 (4) ◽  
pp. 510-518 ◽  
Author(s):  
Roger Schmidt ◽  
Ethan Cruz

This paper focuses on the effect on rack inlet air temperatures as a result of maldistribution of airflows exiting the perforated tiles located adjacent to the fronts of the racks. The flow distribution exiting the perforated tiles was generated from a computational fluid dynamics (CFD) tool called Tileflow (trademark of Innovative Research, Inc.). Both raised floor heights and perforated tile-free areas were varied in order to explore the effect on rack inlet temperatures. The flow distribution exiting the perforated tiles was used as boundary conditions to the above-floor CFD model. A CFD model was generated for the room with electronic equipment installed on a raised floor. Forty racks of data processing (DP) equipment were arranged in rows in a data center cooled by chilled air exhausting from perforated floor tiles. The chilled air was provided by four A/C units placed inside a room 12.1 m wide×13.4 m long. Because the arrangement of the racks in the data center was symmetric, only half of the data center was modeled. The numerical modeling for the area above the raised floor was performed using a commercially available finite control volume computer code called Flotherm (trademark of Flomerics, Inc.). The flow was modeled using the k-e turbulence model. Results are displayed to provide some guidance on the design and layout of a data center.


Author(s):  
Roger Schmidt ◽  
Ethan Cruz

This paper focuses on the effect on inlet rack air temperatures as a result of maldistribution of airflows exiting the perforated tiles located adjacent to the fronts of the racks. The flow distribution exiting the perforated tiles was generated from a computational fluid dynamics (CFD) tool called Tileflow (Trademark of Innovative Research, Inc.). Both raised floor heights and perforated tile free area were varied in order to explore the effect on rack inlet temperatures. The flow distribution exiting the perforated tiles was used as boundary conditions to the above floor CFD model. A CFD model was generated for the room with electronic equipment installed on a raised floor. Fourty racks of data processing (DP) equipment were arranged in rows in a data center cooled by chilled air exhausting from perforated floor tiles. The chilled air was provided by four A/C units placed inside a room 12.1 m wide × 13.4 m long. Since the arrangement of the racks in the data center was symmetric only one-half of the data center was modeled. The numerical modeling for above the raised floor was performed using a commercially available finite control volume computer code called Flotherm (Trademark of Flomerics, Inc.). The flow was modeled using the k-e turbulence model. Results are displayed to provide some guidance on the design and layout of a data center.


Author(s):  
Siddharth Bhopte ◽  
Dereje Agonafer ◽  
Roger Schmidt ◽  
Bahgat Sammakia

In a typical raised floor data center with alternating hot and cold aisles, air enters the front of each rack over the entire height of the rack. Since the heat loads of data processing equipment continues to increase at a rapid rate, it is a challenge to maintain the temperature within the requirements as stated for all the racks within the data center. A facility manager has discretion in deciding the data center room layout, but a wrong decision will eventually lead to equipment failure. There are many complex decisions to be made early in the design as the data center evolves. Challenges occur such as optimizing the raised floor plenum, floor tile placement, minimizing the data center local hot spots etc. These adjustments in configuration affects rack inlet air temperatures which is one of the important key to effective thermal management. In this paper, a raised floor data center with 4.5 kW racks is considered. There are four rows of racks with alternating hot and cold aisle arrangement. Each row has six racks installed. Two CRAC units supply chilled air to the data center through the pressurized plenum. Effect of plenum depth, floor tile placement and ceiling height on the rack inlet air temperature is discussed. Plots will be presented over the defined range. Now a multi-variable approach to optimize data center room layout to minimize the rack inlet air temperature is proposed. Significant improvement over the initial model is shown by using multi-variable design optimization approach. The results of multi-variable design optimization are used to present guidelines for optimal data center performance.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Emad Samadiani ◽  
Jeffrey Rambo ◽  
Yogendra Joshi

This paper is centered on quantifying the effect of computer room and computer room air conditioning (CRAC) unit modeling on the perforated tile flow distribution in a representative raised-floor data center. Also, this study quantifies the effect of plenum pipes and perforated tile porosity on the operating points of the CRAC blowers, total CRAC air flow rate, and its distribution. It is concluded that modeling the computer room, the CRAC units, and/or the plenum pipes could make an average change of up to 17% in the tile flow rates with a maximum of up to 135% for the facility with 56% open tiles while the average and maximum changes for the facility with 25% open tiles are 6% and 60%, respectively.


Author(s):  
Sami A. Alkharabsheh ◽  
Bharathkrishnan Muralidharan ◽  
Mahmoud Ibrahim ◽  
Saurabh K. Shrivastava ◽  
Bahgat G. Sammakia

This paper presents the results of an experimentally validated Computational Fluid Dynamics (CFD) model for a data center with fully implemented fan curves on both the servers and the Computer Room Air Conditioner (CRAC). Open and contained cold aisle systems are considered experimentally and numerically. This work is divided into open (uncontained) cold aisle system calibration and validation, and fully contained cold aisle system calibration and leakage characterization. In the open system, the CRAC unit is calibrated using the manufacturer fan curve. Tiles flow measurements are used to calibrate the floor leakage. The fan curves of the load banks are generated experimentally. A full physics based model of the system is validated with two different CRAC fan speeds. The results showed a very good agreement with the tile flow measurements, with an approximate average error of 5%, indicating that the average model prediction of the tile flow is five percent lower that the measured values. In the fully contained cold aisle system, a detailed containment CFD model based on experimental measurements is developed. The model is validated by comparing the flow rate through the perforated floor tiles with the experimental measurements. The CFD results are in a good agreement with the experimental data. The average error is about 6.7%. Temperature measurements are used to calibrate other sources of containment and racks leaks including mounting rails and clearance between racks. The temperature measurements and the CFD results agree well with average error less than 2%. Detailed and equivalent modeling methods for the floor and containment system are investigated. It is found that the simple equivalent models are able to predict the flow rates however they did not succeed in providing detailed fluid flow information. While the detailed models succeeded in explaining the physical phenomena and predicting the flow rates with noticeable tradeoffs regarding the computational time. Important conclusions can be drawn from this study. In order to accurately model the containment system, both the CRAC and the load banks fan curves should be simulated in the numerical model. Unavoidable racks and containment leaks could cause inlet temperature increase even if the cold aisle is overprovisioned with cold air. It is also noted that heat conduction through the floor tiles causes a slight increase the inlet temperature of the cold aisles. Finally, it is noteworthy that using detailed modeling is necessary to understand the details of the thermal systems, however simpler and faster to compute equivalent models can be used in extended optimization studies that show relative rankings of different designs.


2006 ◽  
Vol 128 (4) ◽  
pp. 380-387 ◽  
Author(s):  
Siddharth Bhopte ◽  
Dereje Agonafer ◽  
Roger Schmidt ◽  
Bahgat Sammakia

In a typical raised floor data center with alternating hot and cold aisles, air enters the front of each rack over the entire height of the rack. Since the heat loads of data processing equipment continue to increase at a rapid rate, it is a challenge to maintain the temperature of all the racks within the stated requirement. A facility manager has discretion in deciding the data center room layout, but a wrong decision will eventually lead to equipment failure. There are many complex decisions to be made early in the design as the data center evolves. Challenges occur such as optimizing the raised floor plenum, floor tile placement, minimizing the data center local hot spots, etc. These adjustments in configuration affect rack inlet air temperatures, which is one of the important keys to effective thermal management. In this paper, a raised floor data center with 12kW racks is considered. There are four rows of racks with alternating hot and cold aisle arrangement. Each row has six racks installed. Two air-conditioning units supply chilled air to the data center through the pressurized plenum. Effect of plenum depth, floor tile placement, and ceiling height on the rack inlet air temperature is discussed. Plots will be presented over the defined range. A multivariable approach to optimize data center room layout to minimize the rack inlet air temperature is proposed. Significant improvement over the initial model is shown by using a multivariable design optimization approach.


Author(s):  
Emad Samadiani ◽  
Jeffrey Rambo ◽  
Yogendra Joshi

This paper is centered on quantifying the effect of computer room and computer room air conditioning (CRAC) unit modeling on the perforated tile flow distribution in a representative raised-floor data center. Also, this study quantifies the effect of plenum pipes and perforated tile porosity on the operating points of the CRAC blowers, total CRAC air flow rate, and its distribution. It is concluded that modeling the computer room, CRAC units, and/or the plenum pipes could change the tile flow distribution by up to 60% for the facility with 25% open perforated tiles and up to 135% for the facility with 56% open perforated tiles.


2014 ◽  
Vol 18 (5) ◽  
pp. 1705-1706
Author(s):  
Li-Li Wu ◽  
Dong-Hui Huang ◽  
Chuan Xu ◽  
Ting Chen

The air flow field of the dual slot die on an HDF-6D melt blowing non-woven equipment is computed numerically. A temperature measurement system is built to measure air temperatures. The computation results tally with the measured results proving the correctness of the computation. The results have great valuable significance in the actual melt blowing production.


Author(s):  
Pramod Kumar ◽  
Yogendra Joshi ◽  
Michael K. Patterson ◽  
Robin Steinbrecher ◽  
Marissa Mena

In this paper we experimentally investigate the air flow distribution at the inlets of two opposing racks in a cold aisle. The racks have non uniform heat load and air flow requirements creating a heterogeneous data center environment. The Computer Room Air Conditioning (CRAC) unit fan speed is set to meet the air requirement of the high heat density rack. The effect of perforated tile air velocity on air distribution to both the racks is studied using particle image velocimetry (PIV) technique. PIV images are recorded at various rack heights corresponding to the locations of the servers in the rack. The PIV images recorded at various locations are stitched to construct a complete rack inlet air flow map. Three cases of rack air flow distributions are studied by varying the server work load and perforated tile flow rate. A significant change in the air distribution pattern is observed for the three cases investigated.


2018 ◽  
Vol 14 (1) ◽  
pp. 44-57
Author(s):  
S. N. Shumov

The spatial analysis of distribution and quantity of Hyphantria cunea Drury, 1973 across Ukraine since 1952 till 2016 regarding the values of annual absolute temperatures of ground air is performed using the Gis-technologies. The long-term pest dissemination data (Annual reports…, 1951–1985; Surveys of the distribution of quarantine pests ..., 1986–2017) and meteorological information (Meteorological Yearbooks of air temperature the surface layer of the atmosphere in Ukraine for the period 1951-2016; Branch State of the Hydrometeorological Service at the Central Geophysical Observatory of the Ministry for Emergencies) were used in the present research. The values of boundary negative temperatures of winter diapause of Hyphantria cunea, that unable the development of species’ subsequent generation, are received. Data analyses suggests almost complete elimination of winter diapausing individuals of White American Butterfly (especially pupae) under the air temperature of −32°С. Because of arising questions on the time of action of absolute minimal air temperatures, it is necessary to ascertain the boundary negative temperatures of winter diapause for White American Butterfly. It is also necessary to perform the more detailed research of a corresponding biological material with application to the freezing technics, giving temperature up to −50°С, with the subsequent analysis of the received results by the punched-analysis.


Sign in / Sign up

Export Citation Format

Share Document