Experimental Investigation Of Diffraction And Interference Phenomena In SAW Interdigital Waveguide Structures On Piezoelectric Substrate By Means Of Acoustic Wave Field Visualization Method

Author(s):  
A.N. Alexeyev ◽  
D.Y. Gorshkov ◽  
D.V. Roschupkin
2013 ◽  
Vol 339 ◽  
pp. 104-108
Author(s):  
Xiang Ting Fu ◽  
Yan Zha ◽  
An Liang Zhang

A method for a droplet transportation by jumping a obstacle on piezoelectric substrate is presented, and a device for the droplet transportation is implemented on a 128° yx-LiNbO3 piezoelectric substrate. An interdigital transducer and a reflector are fabricated on the piezoelectric substrate using microelectric technology. Hydrophobic film is coated on the area free of electrodes and a polydimethylsilicone obstacle is mounted on it. A radio frequency signal amplified by a power amplifier is applied to the interdigital transducer to generate surface acoustic wave. When the surface acoustic wave meets with the droplet on the piezoelectric substrate during transportation, part of acoustic wave enegy is radiated into the droplet, leading to internal acoustic streaming. Once the radio frequency signal with appropriate amplitude is suddenly decreased, part of the droplet will jump the obstacle due to interial force. Red dye solution drops are demonstrated for transportation experiments. Results show that a droplet can be transported from one side to another of the obstacle on piezoelectric substrate by help of surface acoustic wave. The presented method is helpful for microfluidic system on a piezoelectric substrate.


2019 ◽  
Vol 116 ◽  
pp. 00025
Author(s):  
Ahmed Hamood ◽  
Artur Jaworski

This paper presents the experimental investigation of a two-stage thermoacoustic electricity generator able to convert heat at the temperature of the exhaust gases of an internal combustion into useful electricity. The novel configuration is one wavelength and consists of two identical stages. The identical stages will have out of phase acoustic wave at similar amplitudes which allows coupling a linear alternator to run in push-pull mode. The experimental set-up is 16.1 m long and runs at 54.7 Hz. The working medium is helium at 28 bar. The maximum generated electric power is 73.3 W at 5.64% thermal-to-electric efficiency. The working parameters including load resistance, mean pressure and heating power were investigated.


Sign in / Sign up

Export Citation Format

Share Document