Noise Compensation in Super-Resolution Problem Using the Huber Loss Function

Author(s):  
Yegor Goshin ◽  
Daria Arkhipova
2019 ◽  
Vol 11 (21) ◽  
pp. 2593
Author(s):  
Li ◽  
Zhang ◽  
Jiao ◽  
Liu ◽  
Yang ◽  
...  

In the convolutional sparse coding-based image super-resolution problem, the coefficients of low- and high-resolution images in the same position are assumed to be equivalent, which enforces an identical structure of low- and high-resolution images. However, in fact the structure of high-resolution images is much more complicated than that of low-resolution images. In order to reduce the coupling between low- and high-resolution representations, a semi-coupled convolutional sparse learning method (SCCSL) is proposed for image super-resolution. The proposed method uses nonlinear convolution operations as the mapping function between low- and high-resolution features, and conventional linear mapping can be seen as a special case of the proposed method. Secondly, the neighborhoods within the filter size are used to calculate the current pixel, improving the flexibility of our proposed model. In addition, the filter size is adjustable. In order to illustrate the effectiveness of SCCSL method, we compare it with four state-of-the-art methods of 15 commonly used images. Experimental results show that this work provides a more flexible and efficient approach for image super-resolution problem.


2020 ◽  
Vol 79 (29-30) ◽  
pp. 21265-21278
Author(s):  
Qiong Wu ◽  
Chunxiao Fan ◽  
Yong Li ◽  
Yang Li ◽  
Jiahao Hu

2020 ◽  
Vol 10 (5) ◽  
pp. 1729 ◽  
Author(s):  
Yuning Jiang ◽  
Jinhua Li

Objective: Super-resolution reconstruction is an increasingly important area in computer vision. To alleviate the problems that super-resolution reconstruction models based on generative adversarial networks are difficult to train and contain artifacts in reconstruction results, we propose a novel and improved algorithm. Methods: This paper presented TSRGAN (Super-Resolution Generative Adversarial Networks Combining Texture Loss) model which was also based on generative adversarial networks. We redefined the generator network and discriminator network. Firstly, on the network structure, residual dense blocks without excess batch normalization layers were used to form generator network. Visual Geometry Group (VGG)19 network was adopted as the basic framework of discriminator network. Secondly, in the loss function, the weighting of the four loss functions of texture loss, perceptual loss, adversarial loss and content loss was used as the objective function of generator. Texture loss was proposed to encourage local information matching. Perceptual loss was enhanced by employing the features before activation layer to calculate. Adversarial loss was optimized based on WGAN-GP (Wasserstein GAN with Gradient Penalty) theory. Content loss was used to ensure the accuracy of low-frequency information. During the optimization process, the target image information was reconstructed from different angles of high and low frequencies. Results: The experimental results showed that our method made the average Peak Signal to Noise Ratio of reconstructed images reach 27.99 dB and the average Structural Similarity Index reach 0.778 without losing too much speed, which was superior to other comparison algorithms in objective evaluation index. What is more, TSRGAN significantly improved subjective visual evaluations such as brightness information and texture details. We found that it could generate images with more realistic textures and more accurate brightness, which were more in line with human visual evaluation. Conclusions: Our improvements to the network structure could reduce the model’s calculation amount and stabilize the training direction. In addition, the loss function we present for generator could provide stronger supervision for restoring realistic textures and achieving brightness consistency. Experimental results prove the effectiveness and superiority of TSRGAN algorithm.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Evgeni Nikolaevich Terentiev

When controlling the Apparatus Function (AF), the size of definition domain of the AF O and the sampling step and conditionality of the AF must be chosen so that its inverse function pR=pО-1 obtains a minimum norm. The compensation of the AF O distortions in the measured images is realized point-by-point (without using the Fourier Transform in convolution). The computer of the device uses the resolving function pR, selected by the controlling procedure, for achieving super-resolution in images. Such controlled super-resolution is demonstrated on the Martian images.


2021 ◽  
Vol 7 (12) ◽  
pp. 266
Author(s):  
Bastien Laville ◽  
Laure Blanc-Féraud ◽  
Gilles Aubert

Gridless sparse spike reconstruction is a rather new research field with significant results for the super-resolution problem, where we want to retrieve fine-scale details from a noisy and filtered acquisition. To tackle this problem, we are interested in optimisation under some prior, typically the sparsity i.e., the source is composed of spikes. Following the seminal work on the generalised LASSO for measures called the Beurling-Lasso (BLASSO), we will give a review on the chief theoretical and numerical breakthrough of the off-the-grid inverse problem, as we illustrate its usefulness to the super-resolution problem in Single Molecule Localisation Microscopy (SMLM) through new reconstruction metrics and tests on synthetic and real SMLM data we performed for this review.


Sign in / Sign up

Export Citation Format

Share Document