Prediction Time Horizon and Effectiveness of Real-time Data on Short-term Traffic Predictability

Author(s):  
Yang Yue ◽  
Anthony G. O. Yeh ◽  
Yan Zhuang
Forecasting ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 682-694
Author(s):  
Aida Boudhaouia ◽  
Patrice Wira

This article presents a real-time data analysis platform to forecast water consumption with Machine-Learning (ML) techniques. The strategy fully relies on a web-oriented architecture to ensure better management and optimized monitoring of water consumption. This monitoring is carried out through a communicating system for collecting data in the form of unevenly spaced time series. The platform is completed by learning capabilities to analyze and forecast water consumption. The analysis consists of checking the data integrity and inconsistency, in looking for missing data, and in detecting abnormal consumption. Forecasting is based on the Long Short-Term Memory (LSTM) and the Back-Propagation Neural Network (BPNN). After evaluation, results show that the ML approaches can predict water consumption without having prior knowledge about the data and the users. The LSTM approach, by being able to grab the long-term dependencies between time steps of water consumption, allows the prediction of the amount of consumed water in the next hour with an error of some liters and the instants of the 5 next consumed liters in some milliseconds.


2021 ◽  
pp. 1-14
Author(s):  
Nguyen Quang Dat ◽  
Nguyen Thi Ngoc Anh ◽  
Nguyen Nhat Anh ◽  
Vijender Kumar Solanki

Short-term electricity load forecasting (STLF) plays a key role in operating the power system of a nation. A challenging problem in STLF is to deal with real-time data. This paper aims to address the problem using a hybrid online model. Online learning methods are becoming essential in STLF because load data often show complex seasonality (daily, weekly, annual) and changing patterns. Online models such as Online AutoRegressive Integrated Moving Average (Online ARIMA) and Online Recurrent neural network (Online RNN) can modify their parameters on the fly to adapt to the changes of real-time data. However, Online RNN alone cannot handle seasonality directly and ARIMA can only handle a single seasonal pattern (Seasonal ARIMA). In this study, we propose a hybrid online model that combines Online ARIMA, Online RNN, and Multi-seasonal decomposition to forecast real-time time series with multiple seasonal patterns. First, we decompose the original time series into three components: trend, seasonality, and residual. The seasonal patterns are modeled using Fourier series. This approach is flexible, allowing us to incorporate multiple periods. For trend and residual components, we employ Online ARIMA and Online RNN respectively to obtain the predictions. We use hourly load data of Vietnam and daily load data of Australia as case studies to verify our proposed model. The experimental results show that our model has better performance than single online models. The proposed model is robust and can be applied in many other fields with real-time time series.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 399-P
Author(s):  
ANN MARIE HASSE ◽  
RIFKA SCHULMAN ◽  
TORI CALDER

2021 ◽  
Vol 31 (6) ◽  
pp. 7-7
Author(s):  
Valerie A. Canady
Keyword(s):  

Author(s):  
Yu-Hsiang Wu ◽  
Jingjing Xu ◽  
Elizabeth Stangl ◽  
Shareka Pentony ◽  
Dhruv Vyas ◽  
...  

Abstract Background Ecological momentary assessment (EMA) often requires respondents to complete surveys in the moment to report real-time experiences. Because EMA may seem disruptive or intrusive, respondents may not complete surveys as directed in certain circumstances. Purpose This article aims to determine the effect of environmental characteristics on the likelihood of instances where respondents do not complete EMA surveys (referred to as survey incompletion), and to estimate the impact of survey incompletion on EMA self-report data. Research Design An observational study. Study Sample Ten adults hearing aid (HA) users. Data Collection and Analysis Experienced, bilateral HA users were recruited and fit with study HAs. The study HAs were equipped with real-time data loggers, an algorithm that logged the data generated by HAs (e.g., overall sound level, environment classification, and feature status including microphone mode and amount of gain reduction). The study HAs were also connected via Bluetooth to a smartphone app, which collected the real-time data logging data as well as presented the participants with EMA surveys about their listening environments and experiences. The participants were sent out to wear the HAs and complete surveys for 1 week. Real-time data logging was triggered when participants completed surveys and when participants ignored or snoozed surveys. Data logging data were used to estimate the effect of environmental characteristics on the likelihood of survey incompletion, and to predict participants' responses to survey questions in the instances of survey incompletion. Results Across the 10 participants, 715 surveys were completed and survey incompletion occurred 228 times. Mixed effects logistic regression models indicated that survey incompletion was more likely to happen in the environments that were less quiet and contained more speech, noise, and machine sounds, and in the environments wherein directional microphones and noise reduction algorithms were enabled. The results of survey response prediction further indicated that the participants could have reported more challenging environments and more listening difficulty in the instances of survey incompletion. However, the difference in the distribution of survey responses between the observed responses and the combined observed and predicted responses was small. Conclusion The present study indicates that EMA survey incompletion occurs systematically. Although survey incompletion could bias EMA self-report data, the impact is likely to be small.


Sign in / Sign up

Export Citation Format

Share Document