A Slope-robust Cascaded Ground Segmentation in 3D Point Cloud for Autonomous Vehicles

Author(s):  
Patiphon Narksri ◽  
Eijiro Takeuchi ◽  
Yoshiki Ninomiya ◽  
Yoichi Morales ◽  
Naoki Akai ◽  
...  
2022 ◽  
Vol 12 (1) ◽  
pp. 483
Author(s):  
Long Hoang ◽  
Suk-Hwan Lee ◽  
Eung-Joo Lee ◽  
Ki-Ryong Kwon

Light Detection and Ranging (LiDAR), which applies light in the formation of a pulsed laser to estimate the distance between the LiDAR sensor and objects, is an effective remote sensing technology. Many applications use LiDAR including autonomous vehicles, robotics, and virtual and augmented reality (VR/AR). The 3D point cloud classification is now a hot research topic with the evolution of LiDAR technology. This research aims to provide a high performance and compatible real-world data method for 3D point cloud classification. More specifically, we introduce a novel framework for 3D point cloud classification, namely, GSV-NET, which uses Gaussian Supervector and enhancing region representation. GSV-NET extracts and combines both global and regional features of the 3D point cloud to further enhance the information of the point cloud features for the 3D point cloud classification. Firstly, we input the Gaussian Supervector description into a 3D wide-inception convolution neural network (CNN) structure to define the global feature. Secondly, we convert the regions of the 3D point cloud into color representation and capture region features with a 2D wide-inception network. These extracted features are inputs of a 1D CNN architecture. We evaluate the proposed framework on the point cloud dataset: ModelNet and the LiDAR dataset: Sydney. The ModelNet dataset was developed by Princeton University (New Jersey, United States), while the Sydney dataset was created by the University of Sydney (Sydney, Australia). Based on our numerical results, our framework achieves more accuracy than the state-of-the-art approaches.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Seoungjae Cho ◽  
Jonghyun Kim ◽  
Warda Ikram ◽  
Kyungeun Cho ◽  
Young-Sik Jeong ◽  
...  

A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4423 ◽  
Author(s):  
Hu ◽  
Yang ◽  
Li

Environment perception is critical for feasible path planning and safe driving for autonomous vehicles. Perception devices, such as camera, LiDAR (Light Detection and Ranging), IMU(Inertial Measurement Unit), etc., only provide raw sensing data with no identification of vital objects, which is insufficient for autonomous vehicles to perform safe and efficient self-driving operations. This study proposes an improved edge-oriented segmentation-based method to detect the objects from the sensed three-dimensional (3D) point cloud. The improved edge-oriented segmentation-based method consists of three main steps: First, the bounding areas of objects are identified by edge detection and stixel estimation in corresponding two-dimensional (2D) images taken by a stereo camera. Second, 3D sparse point clouds of objects are reconstructed in bounding areas. Finally, the dense point clouds of objects are segmented by matching the 3D sparse point clouds of objects with the whole scene point cloud. After comparison with the existing methods of segmentation, the experimental results demonstrate that the proposed edge-oriented segmentation method improves the precision of 3D point cloud segmentation, and that the objects can be segmented accurately. Meanwhile, the visualization of output data in advanced driving assistance systems (ADAS) can be greatly facilitated due to the decrease in computational time and the decrease in the number of points in the object’s point cloud.


2021 ◽  
Vol 13 (16) ◽  
pp. 3239
Author(s):  
Zhihao Shen ◽  
Huawei Liang ◽  
Linglong Lin ◽  
Zhiling Wang ◽  
Weixin Huang ◽  
...  

LiDAR occupies a vital position in self-driving as the advanced detection technology enables autonomous vehicles (AVs) to obtain much environmental information. Ground segmentation for LiDAR point cloud is a crucial procedure to ensure AVs’ driving safety. However, some current algorithms suffer from embarrassments such as unavailability on complex terrains, excessive time and memory usage, and additional pre-training requirements. The Jump-Convolution-Process (JCP) is proposed to solve these issues. JCP converts the segmentation problem of the 3D point cloud into the smoothing problem of the 2D image and takes little time to improve the segmentation effect significantly. First, the point cloud marked by an improved local feature extraction algorithm is projected onto an RGB image. Then, the pixel value is initialized with the points’ label and continuously updated according to image convolution. Finally, a jump operation is introduced in the convolution process to perform calculations only on the low-confidence points filtered by the credibility propagation algorithm, reducing the time cost. Experiments on three datasets show that our approach has a better segmentation accuracy and terrain adaptability than those of the three existing methods. Meanwhile, the average time for the proposed method to deal with one scan data of 64-beam and 128-beam LiDAR is only 8.61 ms and 15.62 ms, which fully meets the AVs’ requirement for real-time performance.


GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Teng Miao ◽  
Weiliang Wen ◽  
Yinglun Li ◽  
Sheng Wu ◽  
Chao Zhu ◽  
...  

Abstract Background The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4–10 minutes to segment a maize shoot and consumes 10–20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


Sign in / Sign up

Export Citation Format

Share Document