Straight Skeleton Based Automatic Generation of Hierarchical Topological Map in Indoor Environment

Author(s):  
Qian Hou ◽  
Songyi Zhang ◽  
Shitao Chen ◽  
Zhixiong Nan ◽  
Nanning Zheng
2020 ◽  
Vol 11 (1) ◽  
pp. 1-21
Author(s):  
Hengsheng Wang ◽  
Jin Ren

Interacting with mobile robots through natural language is the main concern of this article, which focuses on the semantic meaning of concepts used in natural language instructions to navigate robots indoors. Assuming the building structure is the prior knowledge of the robot and the robot has the ability of navigating itself locally to avoid collision with the environment, the building structure is represented with predicate logic on SWI-Prolog as the database of the indoor environment, which is called semantic map in this paper, in which the basic predicate clauses are based on two kinds of entities, namely ‘area' and ‘node.' The area names (in natural language convention) of indoor environment are organized with an ontology and are defined in the semantic map which includes the geometric information of areas and connection relationships between areas. With the semantic map database, functions for robot navigation, like a topological map, path planning, and self-localization, are realized through reasoning by properly designed predicates based on constraint satisfaction problem (CSP). An example building is given to show the idea proposed in this article, the real data of which was used to establish the semantic map, and the predicates for navigation functions worked well on SWI-Prolog.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1496 ◽  
Author(s):  
Muhammad Ali ◽  
Soojung Hur ◽  
Yongwan Park

Wi-Fi positioning based on fingerprinting has been considered as the most widely used technology in the field of indoor positioning. The fingerprinting database has been used as an essential part of the Wi-Fi positioning system. However, the offline phase of the calibration involves a laborious task of site analysis which involves costs and a waste of time. We offer an indoor positioning system based on the automatic generation of radio maps of the indoor environment. The proposed system does not require any effort and uses Wi-Fi compatible Internet-of-Things (IoT) sensors. Propagation loss parameters are automatically estimated from the online feedback of deployed sensors and the radio maps are updated periodically without any physical intervention. The proposed system leverages the raster maps of an environment with the wall information only, against computationally extensive techniques based on vector maps that require precise information on the length and angles of each wall. Experimental results show that the proposed system has achieved an average accuracy of 2 m, which is comparable to the survey-based Wi-Fi fingerprinting technique.


Author(s):  
Jinseok Woo ◽  
◽  
Naoyuki Kubota

To support daily life before performing an action, a robot partner must perceive an unknown environment. Much research has been done from various viewpoints on self-localization estimation and environment perception. In our research, the robot partner performs self-localization and environment recognition using Simultaneous Localization and Mapping for self-localization estimation and map building. In this paper, we propose a method for recognizing indoor environments by robot partners based on conversations with human beings. Information acquired from maps is identified in order to share the meaning with human beings after the required interpretation. In this paper, we therefore propose a method for recognizing environmental maps by labeling these maps based on symbolic information developed through conversation with human beings. The proposed method is composed of four parts. First, the robot partner applies a steady-state genetic algorithm for self-localization estimation. Second, we use a map building algorithm for expressing the topological map. Third, conversation with human beings is performed for acquiring symbolic information in order to recognize object and position locations through the map. Fourth, we perform experiments and discuss the effectiveness of the proposed technique.


Author(s):  
Luisa Lugli ◽  
Stefania D’Ascenzo ◽  
Roberto Nicoletti ◽  
Carlo Umiltà

Abstract. The Simon effect lies on the automatic generation of a stimulus spatial code, which, however, is not relevant for performing the task. Results typically show faster performance when stimulus and response locations correspond, rather than when they do not. Considering reaction time distributions, two types of Simon effect have been individuated, which are thought to depend on different mechanisms: visuomotor activation versus cognitive translation of spatial codes. The present study aimed to investigate whether the presence of a distractor, which affects the allocation of attentional resources and, thus, the time needed to generate the spatial code, changes the nature of the Simon effect. In four experiments, we manipulated the presence and the characteristics of the distractor. Findings extend previous evidence regarding the distinction between visuomotor activation and cognitive translation of spatial stimulus codes in a Simon task. They are discussed with reference to the attentional model of the Simon effect.


2014 ◽  
Author(s):  
Robert J. Wolter ◽  
Kassandra Hauptmann ◽  
Alycia Hund
Keyword(s):  

Author(s):  
Juil Jeon ◽  
Juyoung Kim ◽  
Myoungin Ji ◽  
Youngsu Cho ◽  
Andrea Lingua ◽  
...  

1999 ◽  
Author(s):  
M. Trunov ◽  
S. Grinshpun ◽  
W. Friedman ◽  
K. Choe ◽  
K. Willeke
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document