Analysis of Image based Indoor Positioning Results in Complex Indoor Environment

Author(s):  
Juil Jeon ◽  
Juyoung Kim ◽  
Myoungin Ji ◽  
Youngsu Cho ◽  
Andrea Lingua ◽  
...  
2014 ◽  
Vol 989-994 ◽  
pp. 2232-2236 ◽  
Author(s):  
Jia Zhi Dong ◽  
Yu Wen Wang ◽  
Feng Wei ◽  
Jiang Yu

Currently, there is an urgent need for indoor positioning technology. Considering the complexity of indoor environment, this paper proposes a new positioning algorithm (N-CHAN) via the analysis of the error of arrival time positioning (TOA) and the channels of S-V model. It overcomes an obvious shortcoming that the accuracy of traditional CHAN algorithm effected by no-line-of-sight (NLOS). Finally, though MATLAB software simulation, we prove that N-CHAN’s superior performance in NLOS in the S-V channel model, which has a positioning accuracy of centimeter-level and can effectively eliminate the influence of NLOS error on positioning accuracy. Moreover, the N-CHAN can effectively improve the positioning accuracy of the system, especially in the conditions of larger NLOS error.


2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


2019 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Fengchun Yin ◽  
Jun Yin

With the development of wireless network and the wide application of pervasive computing technology, the location-based service (LBS) needs more and more location information for mobile users. At present, the outdoor positioning system based on satellite signals has been very mature, but it can not be applied in the complex indoor environment. Therefore, indoor positioning technology has rapidly become a research hotspot. At the same time, the rapid development of wireless network technology, because of its fast communication speed, easy deployment and other characteristics, WiFi-based indoor positioning technology has been widely concerned and studied. Therefore, this paper takes an economic WiFi-based indoor positioning method as the research foundation, and studies the corresponding improved algorithm aiming at the existing problems.


Author(s):  
Hana Kubíčková ◽  
Karel Jedlička ◽  
Radek Fiala ◽  
Daniel Beran

As people grow a custom to effortless outdoor navigation there is a rising demand for similar possibility indoors as well. Unfortunately, indoor localization, being one of the necessary requirements for navigation, continues to be problem without a clear solution. In this article we are proposing a method for an indoor positioning system using a single image. This is made possible using small preprocessed database of images with known control points as the only preprocessing needed. Using feature detection with SIFT algorithm we can look through the database and find image which is the most similar to the image taken by user. Pair of images is then used to find coordinates of database image using PnP problem. Furthermore, projection and essential matrices are determined allowing for the user image localization ~ determining the position of the user in indoor environment. Benefits of this approach lies in the single image being the only input from user and no requirements for new onsite infrastructure and thus enables a simpler realization for the building management.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1496 ◽  
Author(s):  
Muhammad Ali ◽  
Soojung Hur ◽  
Yongwan Park

Wi-Fi positioning based on fingerprinting has been considered as the most widely used technology in the field of indoor positioning. The fingerprinting database has been used as an essential part of the Wi-Fi positioning system. However, the offline phase of the calibration involves a laborious task of site analysis which involves costs and a waste of time. We offer an indoor positioning system based on the automatic generation of radio maps of the indoor environment. The proposed system does not require any effort and uses Wi-Fi compatible Internet-of-Things (IoT) sensors. Propagation loss parameters are automatically estimated from the online feedback of deployed sensors and the radio maps are updated periodically without any physical intervention. The proposed system leverages the raster maps of an environment with the wall information only, against computationally extensive techniques based on vector maps that require precise information on the length and angles of each wall. Experimental results show that the proposed system has achieved an average accuracy of 2 m, which is comparable to the survey-based Wi-Fi fingerprinting technique.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4420 ◽  
Author(s):  
Lu Huang ◽  
Xingli Gan ◽  
Baoguo Yu ◽  
Heng Zhang ◽  
Shuang Li ◽  
...  

Since the signals of the global navigation satellite system (GNSS) are blocked by buildings, accurate positioning cannot be achieved in an indoor environment. Pseudolite can simulate similar outdoor satellite signals and can be used as a stable and reliable positioning signal source in indoor environments. Therefore, it has been proposed as a good substitute and has become a research hotspot in the field of indoor positioning. There are still some problems in the pseudolite positioning field, such as: Integer ambiguity of carrier phase, initial position determination, and low signal coverage. To avoid the limitation of these factors, an indoor positioning system based on fingerprint database matching of homologous array pseudolite is proposed in this paper, which can achieve higher positioning accuracy. The realization of this positioning system mainly includes the offline phase and the online phase. In the offline phase, the carrier phase data in the indoor environment is first collected, and a fingerprint database is established. Then a variational auto-encoding (VAE) network with location information is used to learn the probability distribution characteristics of the carrier phase difference of pseudolite in the latent space to realize feature clustering. Finally, the deep neural network is constructed by using the hidden features learned to further study the mapping relationship between different carrier phases of pseudolite and different indoor locations. In the online phase, the trained model and real-time carrier phases of pseudolite are used to predict the location of the positioning terminal. In this paper, by a large number of experiments, the performance of the pseudolite positioning system is evaluated under dynamic and static conditions. The effectiveness of the algorithm is evaluated by the comparison experiments, the experimental results show that the average positioning accuracy of the positioning system in a real indoor scene is 0.39 m, and the 95% positioning error is less than 0.85 m, which outperforms the traditional fingerprint positioning algorithms.


Author(s):  
Rupesh Kumar ◽  
Bernard Huyart ◽  
Jean-Christophe Cousin

Indoor environment can be characterized as sever attenuating and depolarizing medium for electromagnetic (radio) waves propagation. These signals are radiated from transmitters to space (free-space propagation channel) and received from space to receivers through antennas. These signals are commonly radiated or received with pre-defined signal's polarization schemes and these schemes are always controlled by the antenna. In this chapter, the two-dimensional antenna designs and its polarization schemes are presented for minimizing the sever effects of an indoor environment. Emphasis is on understanding the special attention required for designing an antenna dedicated to an Indoor Positioning/Localization System. Some recent developments in antenna designs are presented as an example for the better understanding and its future perspective.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xingsi Xue ◽  
Xiaoquan Lin ◽  
Chaofan Yang ◽  
Xiaojing Wu

Wireless signal-transmitting process is a complex procedure, to improve the indoor positioning accuracy, and this work proposes a novel indoor positioning technique based on receiving signal’s strength. First, the indoor environment of the building is regionalized in the training phase of indoor positioning. Then, the adjacent points of the indoor space with the same wireless signal transmission characteristics are gathered into the same area, and the corresponding parameter sets and decision domains of each area are constructed. After that, during the positioning stage, the regional confidence and receiving signal’s strength are used to predict the indoor area where the mobile station is located. Finally, the ranging and solution results of the traditional three-sided positioning process are constrained to obtain the optimal solution. Comparing with the traditional positioning techniques that regard the entire complex indoor environment as an entirety, the proposed indoor space regionalization preprocessing method can effectively reduce the ranging error. Compared with the indiscriminate data fusion of the centroid method, the data filtering method based on regional confidence is more targeted. In the experiment, a practical office area is used to test our proposal’s performance, and the experimental results show that our approach can effectively improve the accuracy of indoor positioning results.


Author(s):  
Heng Luo ◽  
Xiaobo Niu ◽  
Junchen Li ◽  
Jianping Chen ◽  
Youmin Zou ◽  
...  

Building structure and other factors lead to the performance deterioration of global postioning system (GPS) positioning systems indoors. An adaptive model for Bluetooth-based indoor positioning is proposed in this paper, targeting at the complex indoor environment, to improve the performance of Bluetooth-oriented indoor positioning systems. More accurate Received Signal Strength Indicator (RSSI) calibration which is optimized via Gaussian filtering, together with the environment-dependent attenuation coefficient optimization, results in a more precise hybrid model in the complicated indoor environment. Experiment results show that the difference between the estimated results and the measured samples is less than 0.25[Formula: see text]m as the target node and reference node is less than 1.5[Formula: see text]m far from each other. As the distance increases to more than 1.5[Formula: see text]m, the relative difference between the estimated values and the measured ones decreases to 7.8% at most, satisfying the requirements for indoor positioning applications.


2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document