scholarly journals Wi-Fi-Based Effortless Indoor Positioning System Using IoT Sensors

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1496 ◽  
Author(s):  
Muhammad Ali ◽  
Soojung Hur ◽  
Yongwan Park

Wi-Fi positioning based on fingerprinting has been considered as the most widely used technology in the field of indoor positioning. The fingerprinting database has been used as an essential part of the Wi-Fi positioning system. However, the offline phase of the calibration involves a laborious task of site analysis which involves costs and a waste of time. We offer an indoor positioning system based on the automatic generation of radio maps of the indoor environment. The proposed system does not require any effort and uses Wi-Fi compatible Internet-of-Things (IoT) sensors. Propagation loss parameters are automatically estimated from the online feedback of deployed sensors and the radio maps are updated periodically without any physical intervention. The proposed system leverages the raster maps of an environment with the wall information only, against computationally extensive techniques based on vector maps that require precise information on the length and angles of each wall. Experimental results show that the proposed system has achieved an average accuracy of 2 m, which is comparable to the survey-based Wi-Fi fingerprinting technique.

2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


2021 ◽  
Author(s):  
Paolo Carbone ◽  
Guido De Angelis ◽  
Valter Pasku ◽  
Alessio De Angelis ◽  
Marco Dionigi ◽  
...  

<div><div><div><p>This paper describes the design and realization of a Magnetic Indoor Positioning System. The system is entirely realized using off-the-shelf components and is based on inductive coupling between resonating coils. Both system-level architecture and realization details are described along with experimental results. The realized system exhibits a maximum positioning error of less than 10 cm in an indoor environment over a 3×3 m2 area. Extensive experiments in larger areas, in non-line-of-sight conditions, and in unfavorable geometric configurations, show sub-meter accuracy, thus validating the robustness of the system with respect to other existing solutions.</p></div></div></div>


Author(s):  
Rhowel M. Dellosa ◽  
Arnel C. Fajardo ◽  
Ruji P. Medina

<span>The fingerprinting localization technique is the most commonly used localization technique of the indoor positioning system. It is used by several technologies for short and long range position estimation like wireless fidelity and radio frequency. There are several schemes used to estimate a location for the indoor environment but the drawbacks resulted in complexity issues. These drawbacks have negative effects on location estimation. In order to address these drawbacks, this work attempted to explore the fingerprinting localization technique for location estimation of the indoor environment that focuses on position estimation. Results showed that the simplicity of the design of position estimation without compromising the functionality of the operations was observed with 100% accuracy on position estimation.</span>


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yunxin Xie ◽  
Chenyang Zhu ◽  
Wei Jiang ◽  
Jia Bi ◽  
Zhengwei Zhu

Recently, there has been growing interest in improving the efficiency and accuracy of the Indoor Positioning System (IPS). The Received Signal Strength- (RSS-) based fingerprinting technique is essential for indoor localization. However, it is challenging to estimate the indoor position based on RSS’s measurement under the complex indoor environment. This paper evaluates three machine learning approaches and Gaussian Process (GP) regression with three different kernels to get the best indoor positioning model. The hyperparameter tuning technique is used to select the optimum parameter set for each model. Experiments are carried out with RSS data from seven access points (AP). Results show that GP with a rational quadratic kernel and eXtreme gradient tree boosting model has the best positioning accuracy compared to other models. In contrast, the eXtreme gradient tree boosting model could achieve higher positioning accuracy with smaller training size and fewer access points.


Sign in / Sign up

Export Citation Format

Share Document