A method for radar coincidence imaging with model errors

Author(s):  
Kaicheng Cao ◽  
Xiaoli Zhou ◽  
Yongqiang Cheng ◽  
Yuliang Qin ◽  
Kang Liu
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bo Fan ◽  
Xiaoli Zhou ◽  
Shuo Chen ◽  
Zhijie Jiang ◽  
Yongqiang Cheng

Sparsity-driven methods are commonly applied to reconstruct targets in radar coincidence imaging (RCI), where the reference matrix needs to be computed precisely and the prior knowledge of the accurate imaging model is essential. Unfortunately, the existence of model errors in practical RCI applications is common, which defocuses the reconstructed image considerably. Accordingly, this paper aims to formulate a unified framework for sparsity-driven RCI with model errors based on the sparse Bayesian approach. Firstly, a parametric joint sparse reconstruction model is built to describe the RCI when perturbed by model errors. The structured sparse Bayesian prior is then assigned to this model, after which the structured sparse Bayesian autofocus (SSBA) algorithm is proposed in the variational Bayesian expectation maximization (VBEM) framework; this solution jointly realizes sparse imaging and model error calibration. Simulation results demonstrate that the proposed algorithm can both calibrate the model errors and obtain a well-focused target image with high reconstruction accuracy.


1989 ◽  
Author(s):  
CHAUR-MING CHOU ◽  
JOHN O'CALLAHAN ◽  
CHI-HSING WU

Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Paolo Di Lillo ◽  
Gianluca Antonelli ◽  
Ciro Natale

SUMMARY Control algorithms of many Degrees-of-Freedom (DOFs) systems based on Inverse Kinematics (IK) or Inverse Dynamics (ID) approaches are two well-known topics of research in robotics. The large number of DOFs allows the design of many concurrent tasks arranged in priorities, that can be solved either at kinematic or dynamic level. This paper investigates the effects of modeling errors in operational space control algorithms with respect to uncertainties affecting knowledge of the dynamic parameters. The effects on the null-space projections and the sources of steady-state errors are investigated. Numerical simulations with on-purpose injected errors are used to validate the thoughts.


Author(s):  
Mengran Zhao ◽  
Shitao Zhu ◽  
Huilin Huang ◽  
Di Hu ◽  
Xiaoming Chen ◽  
...  
Keyword(s):  

Author(s):  
T. Houska ◽  
P. Kraft ◽  
F. Jehn ◽  
K. Bestian ◽  
D. Kraus ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (16) ◽  
pp. 3075
Author(s):  
Ming Xu ◽  
Xiaoyun Wan ◽  
Runjing Chen ◽  
Yunlong Wu ◽  
Wenbing Wang

This study compares the Gravity Recovery And Climate Experiment (GRACE)/GRACE Follow-On (GFO) errors with the coseismic gravity variations generated by earthquakes above Mw8.0s that occurred during April 2002~June 2017 and evaluates the influence of monthly model errors on the coseismic signal detection. The results show that the precision of GFO monthly models is approximately 38% higher than that of the GRACE monthly model and all the detected earthquakes have signal-to-noise ratio (SNR) larger than 1.8. The study concludes that the precision of the time-variable gravity fields should be improved by at least one order in order to detect all the coseismic gravity signals of earthquakes with M ≥ 8.0. By comparing the spectral intensity distribution of the GFO stack errors and the 2019 Mw8.0 Peru earthquake, it is found that the precision of the current GFO monthly model meets the requirement to detect the coseismic signal of the earthquake. However, due to the limited time length of the observations and the interference of the hydrological signal, the coseismic signals are, in practice, difficult to extract currently.


Sign in / Sign up

Export Citation Format

Share Document