Lightning Impulse Parameter Estimation Using Nonlinear Least Squares Algorithm

Author(s):  
Mohammad I. Al Saaideh ◽  
Eyad A. Feilat ◽  
Dia I. Abu-Al-Nadi ◽  
Amer S. Al-Hinai
2017 ◽  
Vol 31 (3) ◽  
pp. 433-445
Author(s):  
Yifan Yan ◽  
Jianli Liu ◽  
Jiabao Zhang ◽  
Xiaopeng Li ◽  
Yongchao Zhao

AbstractNonlinear least squares algorithm is commonly used to fit the evaporation experiment data and to obtain the ‘optimal’ soil hydraulic model parameters. But the major defects of nonlinear least squares algorithm include non-uniqueness of the solution to inverse problems and its inability to quantify uncertainties associated with the simulation model. In this study, it is clarified by applying retention curve and a modified generalised likelihood uncertainty estimation method to model calibration. Results show that nonlinear least squares gives good fits to soil water retention curve and unsaturated water conductivity based on data observed by Wind method. And meanwhile, the application of generalised likelihood uncertainty estimation clearly demonstrates that a much wider range of parameters can fit the observations well. Using the ‘optimal’ solution to predict soil water content and conductivity is very risky. Whereas, 95% confidence interval generated by generalised likelihood uncertainty estimation quantifies well the uncertainty of the observed data. With a decrease of water content, the maximum of nash and sutcliffe value generated by generalised likelihood uncertainty estimation performs better and better than the counterpart of nonlinear least squares. 95% confidence interval quantifies well the uncertainties and provides preliminary sensitivities of parameters.


Author(s):  
James R. McCusker ◽  
Kourosh Danai

A method of parameter estimation was recently introduced that separately estimates each parameter of the dynamic model [1]. In this method, regions coined as parameter signatures, are identified in the time-scale domain wherein the prediction error can be attributed to the error of a single model parameter. Based on these single-parameter associations, individual model parameters can then be estimated for iterative estimation. Relative to nonlinear least squares, the proposed Parameter Signature Isolation Method (PARSIM) has two distinct attributes. One attribute of PARSIM is to leave the estimation of a parameter dormant when a parameter signature cannot be extracted for it. Another attribute is independence from the contour of the prediction error. The first attribute could cause erroneous parameter estimates, when the parameters are not adapted continually. The second attribute, on the other hand, can provide a safeguard against local minima entrapments. These attributes motivate integrating PARSIM with a method, like nonlinear least-squares, that is less prone to dormancy of parameter estimates. The paper demonstrates the merit of the proposed integrated approach in application to a difficult estimation problem.


Sign in / Sign up

Export Citation Format

Share Document