Eddy Current Loss and Detuning Effect of Seawater on Wireless Power Transfer

Author(s):  
Kehan Zhang ◽  
Yunshan Ma ◽  
Zhengchao Yan ◽  
Zhengfei Di ◽  
Baowei Song ◽  
...  
Author(s):  
Wangqiang Niu ◽  
Chen Ye ◽  
Wei Gu

Nowadays, as the whole world put more emphasis on ocean resource exploration, the use of automatic underwater vehicles (UAVs) comes to be increasingly frequent. Inductive wireless power transfer (IWPT), as a power transfer solution with high safety and exibility, is quite promising applied in UAV power supply. However, when applied underwater, IWPT efficiency decreases due to eddy current loss (ECL) caused by high conductivity of water medium. In order to analyze IWPT output characteristics in seawater, this paper proposes a coupling circuit model involving equivalent eddy current loss impedance (EECLI), which is derived via three- coil model. On the one hand, it is found that splitting frequency still exists in IWPT under seawater. On the other hand, EECLI is independent to coil distance, but proportional to operation frequency. The validity of the proposed model for IWPT system with coils in small size (coil outer diameter 12 cm, system resonant fre- quency 570 kHz) is verified by experiment, which means it is available for IWPT system design and analysis.


AIP Advances ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 101421 ◽  
Author(s):  
Zhengchao Yan ◽  
Baowei Song ◽  
Kehan Zhang ◽  
Haibing Wen ◽  
Zhaoyong Mao ◽  
...  

2016 ◽  
Author(s):  
Miaomiao Xu ◽  
Xiongzhu Bu ◽  
Zhangjie Tu

Wireless power transmission efficiency and ripple interference attract more and more attention nowadays, but in some special metal environments the transmission efficiency of wireless power will be greatly influenced. In some practical engineering application, we need to use wireless energy to power the sensor on the high speed rotating parts. In order to improve the transmission efficiency and quality of the wireless power supply, researches are conducted to evaluate the eddy current loss and electromagnetic interference of wireless power in high-speed rotating component parameter test system. In this paper, electromagnetic coupling wireless power supply system is established as the transmission model. Then the analytical expressions of eddy current loss are derived by solving Maxwell’s equations, and after that the eddy current loss characteristics is analyzed by combining with the electromagnetic coupling model and eddy current losses model in metal medium. To verify the theoretical results, Maxwell electromagnetic field simulation software is used to analyze the characteristics of the eddy current. Finally, experiments are carried out to illustrate the effect of ferrite magnetic shielding material on the eddy current loss and the shielding effect on the external electromagnetic interference in the metal shaft environment.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3534 ◽  
Author(s):  
Babatunde Olukotun ◽  
Julius Partridge ◽  
Richard Bucknall

This paper presents the optimal modeling and finite element analysis of strong-coupled, high-power and low-loss flux-pipe resonant coils for bidirectional wireless power transfer (WPT), applicable to electric vehicles (EVs) using series-series compensation topology. The initial design involves the modeling of strong-coupled flux-pipe coils with a fixed number of wire-turns. The ohmic and core loss reduction for the optimized coil model was implemented by creating two separate coils that are electrically parallel but magnetically coupled in order to achieve maximum flux linkage between the secondary and primary coils. Reduction in the magnitude of eddy current losses was realized by design modification of the ferrite core geometry and optimized selection of shielding material. The ferrite core geometry was modified to create a C-shape that enabled the boosting and linkage of useful magnetic flux. In addition, an alternative copper shielding methodology was selected with the advantage of having fewer eddy current power losses per unit mass when compared with aluminum of the same physical dimension. From the simulation results obtained, the proposed flux-pipe model offers higher coil-to-coil efficiency and a significant increase in power level when compared with equivalent circular, rectangular and traditional flux-pipe models over a range of load resistance. The proposed model design is capable of transferring over 11 kW of power across an airgap of 200 mm with a coil-to-coil efficiency of over 99% at a load resistance of 60 Ω.


Sign in / Sign up

Export Citation Format

Share Document