Energy-Latency Tradeoff for Computation Offloading in UAV-assisted Multi-Access Edge Computing System

Author(s):  
Kaiyuan Zhang ◽  
Xiaolin Gui ◽  
Dewang Ren ◽  
Defu Li
Author(s):  
Yong Xiao ◽  
Ling Wei ◽  
Junhao Feng ◽  
Wang En

Edge computing has emerged for meeting the ever-increasing computation demands from delay-sensitive Internet of Things (IoT) applications. However, the computing capability of an edge device, including a computing-enabled end user and an edge server, is insufficient to support massive amounts of tasks generated from IoT applications. In this paper, we aim to propose a two-tier end-edge collaborative computation offloading policy to support as much as possible computation-intensive tasks while making the edge computing system strongly stable. We formulate the two-tier end-edge collaborative offloading problem with the objective of minimizing the task processing and offloading cost constrained to the stability of queue lengths of end users and edge servers. We perform analysis of the Lyapunov drift-plus-penalty properties of the problem. Then, a cost-aware computation offloading (CACO) algorithm is proposed to find out optimal two-tier offloading decisions so as to minimize the cost while making the edge computing system stable. Our simulation results show that the proposed CACO outperforms the benchmarked algorithms, especially under various number of end users and edge servers.


2019 ◽  
Vol 10 (1) ◽  
pp. 203 ◽  
Author(s):  
Luan N. T. Huynh ◽  
Quoc-Viet Pham ◽  
Xuan-Qui Pham ◽  
Tri D. T. Nguyen ◽  
Md Delowar Hossain ◽  
...  

In recent years, multi-access edge computing (MEC) has become a promising technology used in 5G networks based on its ability to offload computational tasks from mobile devices (MDs) to edge servers in order to address MD-specific limitations. Despite considerable research on computation offloading in 5G networks, this activity in multi-tier multi-MEC server systems continues to attract attention. Here, we investigated a two-tier computation-offloading strategy for multi-user multi-MEC servers in heterogeneous networks. For this scenario, we formulated a joint resource-allocation and computation-offloading decision strategy to minimize the total computing overhead of MDs, including completion time and energy consumption. The optimization problem was formulated as a mixed-integer nonlinear program problem of NP-hard complexity. Under complex optimization and various application constraints, we divided the original problem into two subproblems: decisions of resource allocation and computation offloading. We developed an efficient, low-complexity algorithm using particle swarm optimization capable of high-quality solutions and guaranteed convergence, with a high-level heuristic (i.e., meta-heuristic) that performed well at solving a challenging optimization problem. Simulation results indicated that the proposed algorithm significantly reduced the total computing overhead of MDs relative to several baseline methods while guaranteeing to converge to stable solutions.


2020 ◽  
Vol 69 (2) ◽  
pp. 1982-1993 ◽  
Author(s):  
Quoc-Viet Pham ◽  
Hoang T. Nguyen ◽  
Zhu Han ◽  
Won-Joo Hwang

Sign in / Sign up

Export Citation Format

Share Document