Efficient Data Access Control with Fine-Grained Data Protection in Cloud-Assisted IIoT

Author(s):  
Saiyu Qi ◽  
Youshui Lu ◽  
Wei Wei ◽  
Xiaofeng Chen
2020 ◽  
Vol 9 (4) ◽  
pp. 61-81
Author(s):  
G. Sravan Kumar

Ciphertext-policy attribute-based encryption (CP-ABE) schemes provide fine-grained access control for the data stored in cloud computers. However, commercial CP-ABE applications need a new encryption scheme for providing two properties such as: supporting large universe attribute and traceability. First, a large universe attribute allows the attribute authority to use any number of attributes in the system. i.e., the attribute universe is dynamic, and it is not fixed at the setup phase. Second, traceable CP-ABE systems trace the dishonest users who intentionally leak the private key for their profit. In this article, a large universe CP-ABE system with white box traceability has been proposed. The attribute universe of the proposed technique is exponentially larger, and it is polynomially unbound. Further, this technique will trace the identity of users who involve in malicious activities. In addition, the proposed scheme can express any kind of monotonic tree access policies into linear secret sharing structure (LSSS). Compared with the existing schemes that are presented to achieve the same property, proposed scheme has achieved better experimental results and so it is applicable for commercial applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Kaiqing Huang ◽  
Xueli Wang ◽  
Zhiqiang Lin

With the assistance of edge computing which reduces the heavy burden of the cloud center server by using the network edge servers, the Internet of Things (IoTs) architectures enable low latency for real-time devices and applications. However, there still exist security challenges on data access control for the IoT. Multiauthority attribute-based encryption (MA-ABE) is a promising technique to achieve access control over encrypted data in cross-domain applications. Based on the characteristics and technical requirements of the IoT, we propose an efficient fine-grained revocable large universe multiauthority access control scheme. In the proposed scheme, the most expensive encryption operations have been executed in the user’s initialization phase by adding a reusable ciphertext pool besides splitting the encryption algorithm to online encryption and offline encryption. Massive decryption operations are outsourced to the near-edge servers for reducing the computation overhead of decryption. An efficient revocation mechanism is designed to change users’ access privileges dynamically. Moreover, the scheme supports ciphertext verification. Only valid ciphertext can be stored and transmitted, which saves system resources. With the help of the chameleon hash function, the proposed scheme is proven CCA2-secure under the q-DPBDHE2 assumption. The performance analysis results indicate that the proposed scheme is efficient and suitable in edge computing for the IoT.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2109
Author(s):  
Liming Fang ◽  
Minghui Li ◽  
Lu Zhou ◽  
Hanyi Zhang ◽  
Chunpeng Ge

A smart watch is a kind of emerging wearable device in the Internet of Things. The security and privacy problems are the main obstacles that hinder the wide deployment of smart watches. Existing security mechanisms do not achieve a balance between the privacy-preserving and data access control. In this paper, we propose a fine-grained privacy-preserving access control architecture for smart watches (FPAS). In FPAS, we leverage the identity-based authentication scheme to protect the devices from malicious connection and policy-based access control for data privacy preservation. The core policy of FPAS is two-fold: (1) utilizing a homomorphic and re-encrypted scheme to ensure that the ciphertext information can be correctly calculated; (2) dividing the data requester by different attributes to avoid unauthorized access. We present a concrete scheme based on the above prototype and analyze the security of the FPAS. The performance and evaluation demonstrate that the FPAS scheme is efficient, practical, and extensible.


2015 ◽  
Vol 4 (3) ◽  
pp. 276-287 ◽  
Author(s):  
Boniface K. Alese ◽  
Sylvester O. Olatunji ◽  
Oluwatoyin C. Agbonifo ◽  
Aderonke F. Thompson

Author(s):  
Shaik Jaffer Vali , Et. al.

Fog Computing is a region of Computer Science that is under steady construction and development, and related to data security, the worldview turns out to be more solid and secure for IoT's edge stages. The verification of limited memory devices has serious issues since memory utilization is high when applied with different models that have the motivation behind shared confirmation. In this paper, we propose the Novel cipher text-based encryption model (NCEM) which has an information access control plot dependent on Ciphertext-Policy it give information privacy, fine-grained control, and mysterious validation in a multi-authority fog computing framework. The sign cryption and plan cryption overhead for the client is altogether diminished by redistributing the bothersome calculation tasks to fog hubs. The proposed conspire is demonstrated to be secure in the standard model and can give trait repudiation and public unquestionable status. The security analysis, asymptotic multifaceted nature examination, and implementation results demonstrate that our construction can offset the security objectives with useful effectiveness in calculation.


Sign in / Sign up

Export Citation Format

Share Document