Node Collaborative Sensing-based Redundant Path Construction for Multi-area Coverage in MWSNs

Author(s):  
Minghua Wang ◽  
Chenxuan Zhai
2021 ◽  
Author(s):  
Chris Moneyron ◽  
Moe Sakamoto ◽  
Mo Rastgaar ◽  
Nina Mahmoudian
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2400
Author(s):  
Ziyong Zhang ◽  
Xiaoling Xu ◽  
Jinqiang Cui ◽  
Wei Meng

This paper is concerned with relative localization-based optimal area coverage placement using multiple unmanned aerial vehicles (UAVs). It is assumed that only one of the UAVs has its global position information before performing the area coverage task and that ranging measurements can be obtained among the UAVs by using ultra-wide band (UWB) sensors. In this case, multi-UAV relative localization and cooperative coverage control have to be run simultaneously, which is a quite challenging task. In this paper, we propose a single-landmark-based relative localization algorithm, combined with a distributed coverage control law. At the same time, the optimal multi-UAV placement problem was formulated as a quadratic programming problem by compromising between optimal relative localization and optimal coverage control and was solved by using Sequential Quadratic Programming (SQP) algorithms. Simulation results show that our proposed method can guarantee that a team of UAVs can efficiently localize themselves in a cooperative manner and, at the same time, complete the area coverage task.


2021 ◽  
pp. 1-20
Author(s):  
Bester Tawona Mudereri ◽  
Tavengwa Chitata ◽  
Abel Chemura ◽  
Joseph Makaure ◽  
Concilia Mukanga ◽  
...  
Keyword(s):  

Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Igor M. Verner ◽  
Dan Cuperman ◽  
Michael Reitman

Education is facing challenges to keep pace with the widespread introduction of robots and digital technologies in industry and everyday life. These challenges necessitate new approaches to impart students at all levels of education with the knowledge of smart connected robot systems. This paper presents the high-school enrichment program Intelligent Robotics and Smart Transportation, which implements an approach to teaching the concepts and skills of robot connectivity, collaborative sensing, and artificial intelligence, through practice with multi-robot systems. The students used a simple control language to program Bioloid wheeled robots and utilized Phyton and Robot Operating System (ROS) to program Tello drones and TurtleBots in a Linux environment. In their projects, the students implemented multi-robot tasks in which the robots exchanged sensory data via the internet. Our educational study evaluated the contribution of the program to students’ learning of connectivity and collaborative sensing of robot systems and their interest in modern robotics. The students’ responses indicated that the program had a high positive contribution to their knowledge and skills and fostered their interest in the learned subjects. The study revealed the value of learning of internet of things and collaborative sensing for enhancing this contribution.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1821
Author(s):  
Lazaros Moysis ◽  
Karthikeyan Rajagopal ◽  
Aleksandra V. Tutueva ◽  
Christos Volos ◽  
Beteley Teka ◽  
...  

This work proposes a one-dimensional chaotic map with a simple structure and three parameters. The phase portraits, bifurcation diagrams, and Lyapunov exponent diagrams are first plotted to study the dynamical behavior of the map. It is seen that the map exhibits areas of constant chaos with respect to all parameters. This map is then applied to the problem of pseudo-random bit generation using a simple technique to generate four bits per iteration. It is shown that the algorithm passes all statistical NIST and ENT tests, as well as shows low correlation and an acceptable key space. The generated bitstream is applied to the problem of chaotic path planning, for an autonomous robot or generally an unmanned aerial vehicle (UAV) exploring a given 3D area. The aim is to ensure efficient area coverage, while also maintaining an unpredictable motion. Numerical simulations were performed to evaluate the performance of the path planning strategy, and it is shown that the coverage percentage converges exponentially to 100% as the number of iterations increases. The discrete motion is also adapted to a smooth one through the use of B-Spline curves.


2007 ◽  
Vol 134 (2) ◽  
pp. 195-208 ◽  
Author(s):  
Richard A. Bergl ◽  
John F. Oates ◽  
Roger Fotso
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document