Air trench bends and splitters for dense optical integration in low index contrast

2005 ◽  
Vol 23 (7) ◽  
pp. 2271-2277 ◽  
Author(s):  
S. Akiyama ◽  
M.A. Popovic ◽  
P.T. Rakich ◽  
K. Wada ◽  
J. Michel ◽  
...  
Author(s):  
John W. Coleman

The injector to be described is a component in the Electron Injector-Linear Accelerator—Condenser Module for illumination used on the variable 100-500kV electron microscope being built at the Radio Corporation of America for the University of Virginia.The injector is an independently powered, autonomous unit, operating at a constant 6kV positive with respect to accelerator potential, thereby making beam current independent of accelerator potential. The injector provides for on-axis ion trapping to prolong filament lifetime, and incorporates a derived Einzel lens for optical integration into the overall illumination system for microscopy. Electrostatic beam deflectors for alignment are an integral part of the apparatus. The entire injector unit is cantilevered off a door for side loading, and is topped with a 4-filament turret released electrically but driven by a self-contained Negator spring motor.


Choonpa Igaku ◽  
2006 ◽  
Vol 33 (6) ◽  
pp. 665-671
Author(s):  
Satoshi YAMADA ◽  
Kaoru KOMURO ◽  
Mariko TANIGUCHI ◽  
Ayumi URANISHI ◽  
Hiroshi KOMATSU ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 123
Author(s):  
Zhong Lijing ◽  
Roman A. Zakoldaev ◽  
Maksim M. Sergeev ◽  
Andrey B. Petrov ◽  
Vadim P. Veiko ◽  
...  

Laser direct writing technique in glass is a powerful tool for various waveguides’ fabrication that highly develop the element base for designing photonic devices. We apply this technique to fabricate waveguides in porous glass (PG). Nanoporous optical materials for the inscription can elevate the sensing ability of such waveguides to higher standards. The waveguides were fabricated by a single-scan approach with femtosecond laser pulses in the densification mode, which resulted in the formation of a core and cladding. Experimental studies revealed three types of waveguides and quantified the refractive index contrast (up to Δn = 1.2·10−2) accompanied with ~1.2 dB/cm insertion losses. The waveguides demonstrated the sensitivity to small objects captured by the nanoporous framework. We noticed that the deposited ethanol molecules (3 µL) on the PG surface influence the waveguide optical properties indicating the penetration of the molecule to its cladding. Continuous monitoring of the output near field intensity distribution allowed us to determine the response time (6 s) of the waveguide buried at 400 µm below the glass surface. We found that the minimum distinguishable change of the refractive index contrast is 2 × 10−4. The results obtained pave the way to consider the waveguides inscribed into PG as primary transducers for sensor applications.


2008 ◽  
Vol 55 (12) ◽  
pp. 1913-1921 ◽  
Author(s):  
Jiangong Zhao ◽  
Aijun Wen ◽  
Zengji Liu and Peng Yue

2010 ◽  
Author(s):  
Balpreet Singh Ahluwalia ◽  
Olav Gaute Hellesø ◽  
Ananth Z. Subramanian ◽  
James S. Wilkinson ◽  
Jie Chen ◽  
...  

2008 ◽  
Vol 16 (1) ◽  
pp. 456 ◽  
Author(s):  
Nazli Rahmanian ◽  
Seunghyun Kim ◽  
Yongbin Lin ◽  
Gregory P. Nordin

2011 ◽  
Author(s):  
Vygantas Mizeikis ◽  
Vytautas Purlys ◽  
Lina Maigyte ◽  
Kestutis Staliunas ◽  
Saulius Juodkazis

Sign in / Sign up

Export Citation Format

Share Document