Photonic Generation of Highly-Linear Ultra-Wideband Stepped-Frequency Microwave Signals with Up to 6106 Time-Bandwidth Product

2021 ◽  
pp. 1-1
Author(s):  
Yujie Lv ◽  
Yihan Li ◽  
Chunlong Yu ◽  
Li Yi ◽  
Tadao Nagatsuma ◽  
...  
2014 ◽  
Vol 316 ◽  
pp. 106-110 ◽  
Author(s):  
Yuan Mei ◽  
Yuxiao Xu ◽  
Hao Chi ◽  
Xianmin Zhang ◽  
Xiaofeng Jin ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 780
Author(s):  
Kazunori Takahashi ◽  
Takashi Miwa

The paper discusses a way to configure a stepped-frequency continuous wave (SFCW) radar using a low-cost software-defined radio (SDR). The most of high-end SDRs offer multiple transmitter (TX) and receiver (RX) channels, one of which can be used as the reference channel for compensating the initial phases of TX and RX local oscillator (LO) signals. It is same as how commercial vector network analyzers (VNAs) compensate for the LO initial phase. These SDRs can thus acquire phase-coherent in-phase and quadrature (I/Q) data without additional components and an SFCW radar can be easily configured. On the other hand, low-cost SDRs typically have only one transmitter and receiver. Therefore, the LO initial phase has to be compensated and the phases of the received I/Q signals have to be retrieved, preferably without employing an additional receiver and components to retain the system low-cost and simple. The present paper illustrates that the difference between the phases of TX and RX LO signals varies when the LO frequency is changed because of the timing of the commencement of the mixing. The paper then proposes a technique to compensate for the LO initial phases using the internal RF loopback of the transceiver chip and to reconstruct a pulse, which requires two streaming: one for the device under test (DUT) channel and the other for the internal RF loopback channel. The effect of the LO initial phase and the proposed method for the compensation are demonstrated by experiments at a single frequency and sweeping frequency, respectively. The results show that the proposed method can compensate for the LO initial phases and ultra-wideband (UWB) pulses can be reconstructed correctly from the data sampled by a low-cost SDR.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3873 ◽  
Author(s):  
Hao Lv ◽  
Teng Jiao ◽  
Yang Zhang ◽  
Fulai Liang ◽  
Fugui Qi ◽  
...  

Human being detection via ultra-wideband (UWB) radars has shown great prospects in many areas, such as biomedicine, military operation, public security, emergency rescue, and so on. When a person stays stationary, the main feature that separates him/her from surroundings is the movement of chest wall due to breath. There have been many algorithms developed for breath detection while using UWB radars. However, those algorithms were almost based on a basic scheme that focused on processing in the time dimension of UWB data. They did not utilize the benefits from the wide operational bandwidth of UWB radars to show potential superiority over those narrowband systems such as a continuous wave (CW) Doppler radar. In this paper, a breath detection method was proposed based on operational bandwidth segmentation. A basic theoretical model was firstly introduced, indicating that characteristics of breath signals contained in UWB echoes were consistent among the operational frequencies, while those of clutters were not. So, the method divided a set of UWB echo data into a number of subsets, each of which corresponded to a sub-band within the operational bandwidth of the UWB radar. Thus information about the operational frequency is provided for subsequent processing. With the aid of the information, a breath enhancement algorithm was developed mainly by averaging the segmented UWB data along the operational frequency. The algorithm’s performance was verified by data measured by a stepped-frequency CW (SFCW) UWB radar. The experimental results showed that the algorithm performed better than that without the segmentation. They also showed its feasibility for fast detection of breath based on a short duration of data. Moreover, the method’s potential for target identification and impulse-radio (IR) UWB radar was investigated. In summary, the method provides a new processing scheme for UWB radars when they are used for breath detection. With this scheme, the UWB radars have a benefit of greater flexibility in data processing over those narrowband radars, and thus will perform more effectively and efficiently in practical applications.


2018 ◽  
Vol 30 (21) ◽  
pp. 1862-1865 ◽  
Author(s):  
Sha Zhu ◽  
Ming Li ◽  
Xin Wang ◽  
Ning Hua Zhu ◽  
Wei Li

2009 ◽  
Vol 36 (1) ◽  
pp. 92-95
Author(s):  
赵羽 Zhao Yu ◽  
赵德双 Zhao Deshuang ◽  
刘永智 Liu Yongzhi ◽  
黄琳 Huang Lin

Sign in / Sign up

Export Citation Format

Share Document