Integratable Capacitive Sensor for Identification of Microfluidic Two-Phase Flow Patterns in Lab-on-Chip Devices

2016 ◽  
Vol 25 (1) ◽  
pp. 197-206 ◽  
Author(s):  
Zhaochu Yang ◽  
Tao Dong ◽  
Atle Jensen ◽  
Einar Halvorsen
2014 ◽  
Vol 24 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Zhaochu Yang ◽  
Tao Dong ◽  
Einar Halvorsen

Author(s):  
Christian Weinmu¨ller ◽  
Nicole R. Bieri ◽  
Dimos Poulikakos

The area of microfluidics has experienced a tremendous increase in research activities in recent years with a wide range of applications, such as micro heat exchangers and energy conversion devices, microreactors, lab-on-chip devices, micro total chemical analysis systems (μTAS) etc. The occurrence of two phase flow can lead to several mechanisms enhancing or extending the performance of single phase microfluidic devices [1]. On the other hand, in a micro fuel cell the second, non-immiscible phase is considered to hamper the performance of the fuel cell [2]. Regardless of its effect, two phase flows in microfluidics deserve special research attention.


Author(s):  
Colin King ◽  
Edmond Walsh ◽  
Ronan Grimes

The use of two phase flow in lab-on-chip devices, where chemical and biological reagents are enclosed within plugs separated from each other by an immiscible fluid, offers significant advantages for the development of devices with high throughput of individual heterogeneous samples. Lab-on-chip devices designed to perform the polymerase chain reaction (PCR) are a prime example of such developments. The internal circulation within the plugs used to transport the reagents affects the efficiency of the chemical reaction within the plug, due to the degree of mixing induced on the reagents by the flow regime. It has been hypothesised in the literature that all plug flows produce internal circulation. This work demonstrates experimentally that this is false, and seeks to elucidate the parameters influencing the internal circulation of plugs. The particle image velocimetry (PIV) technique offers a powerful non-intrusive tool to study such flow fields. This paper presents micro-PIV experiments carried out to study the internal circulation of aqueous plugs in two phase flow within 762μm internal diameter FEP Teflon tubing with FC-40 as the segmenting fluid. Experiments have been performed and the results are presented for plugs ranging in length from 1mm to 13mm with an average fluid velocity ranging from 0.3mm/s to 50mm/s. The results demonstrate that circulation within the plugs is not always present and requires design considerations to benefit from this phenomenon.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 226
Author(s):  
Rashal Abed ◽  
Mohamed M. Hussein ◽  
Wael H. Ahmed ◽  
Sherif Abdou

Airlift pumps can be used in the aquaculture industry to provide aeration while concurrently moving water utilizing the dynamics of two-phase flow in the pump riser. The oxygen mass transfer that occurs from the injected compressed air to the water in the aquaculture systems can be experimentally investigated to determine the pump aeration capabilities. The objective of this study is to evaluate the effects of various airflow rates as well as the injection methods on the oxygen transfer rate within a dual injector airlift pump system. Experiments were conducted using an airlift pump connected to a vertical pump riser within a recirculating system. Both two-phase flow patterns and the void fraction measurements were used to evaluate the dissolved oxygen mass transfer mechanism through the airlift pump. A dissolved oxygen (DO) sensor was used to determine the DO levels within the airlift pumping system at different operating conditions required by the pump. Flow visualization imaging and particle image velocimetry (PIV) measurements were performed in order to better understand the effects of the two-phase flow patterns on the aeration performance. It was found that the radial injection method reached the saturation point faster at lower airflow rates, whereas the axial method performed better as the airflow rates were increased. The standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) were calculated and were found to strongly depend on the injection method as well as the two-phase flow patterns in the pump riser.


Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2012 ◽  
Vol 51 (13) ◽  
pp. 5056-5066 ◽  
Author(s):  
P. S. Sarkar ◽  
K. K. Singh ◽  
K. T. Shenoy ◽  
A. Sinha ◽  
H. Rao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document