scholarly journals Dynamic Characterization of III-Nitride-Based High-Speed Photodiodes

2017 ◽  
Vol 9 (4) ◽  
pp. 1-7 ◽  
Author(s):  
Bandar Alshehri ◽  
Karim Dogheche ◽  
Sofiane Belahsene ◽  
Abderrahim Ramdane ◽  
Gilles Patriarche ◽  
...  
2013 ◽  
Vol 535-536 ◽  
pp. 48-51 ◽  
Author(s):  
Rafael Celeghini Santiago ◽  
Marcilio Alves

The mechanical strength of a fiber-metal laminate is not so well explored at high strain rates, although its constituents are prone to exhibit such effects. In this paper, we describe an investigation of aluminium-fiber glass material using the Split Hopkinson bar device. We report on various experimental issues related to these tests, giving some emphasis to the use of high speed filming to obtain information on the specimen strain and strain rate.


Author(s):  
Panneer Selvam R. ◽  
Muthukannan Duraiselvam ◽  
Sanjay G. Barad ◽  
Dilip Kumar

Abstract Experimental Modal Analysis (EMA) is a conventional technique for establishing the modal parameters of the components. The modal parameters are the dynamic characteristics viz. frequency, mode shapes and damping that are used for assessing and validating the design predictions through correlation studies. For this task EMA technique is adopted to assess the dynamic characteristics of an additive manufactured (AM) turbine wheel of a turbocharger. Correlation studies are undertaken to validate the theoretical model developed. These Correlation studies ensured that there is no major deviations to proceed for high speed spin testing of this turbine wheel in simulated environment. The possible interference or resonances in the operating range are identified for safe operation of the test rotor.


Author(s):  
Jiamin Zhang ◽  
Peng Shan ◽  
Kai Cheng ◽  
Dechao Ye

The tip-timing technology has been widely developed and has become an industry standard in aircraft engine and gas turbine over past decade. The main application of the tip-timing method is to verify safe operation of blades and monitor the health of blades. But tip-timing technology gets rarely used to the last stage blade of steam turbine. Particularly the blade is designed with an integral shroud, snubber and fir-tree root. The article mainly describes the process of identifying the dynamic characterization of last stage blade with an integral shroud and snubber by contactless measurements provided by tip-timing technology. Attention is focused on the comparison of tip-timing results with the results from strain gauge data. Firstly, the frequency response of the bladed blisk is calculated by using Computer-Aided-Engineering (CAE) technologies. Secondly, according to the results of finite element modal calculation, the location of strain gauge is confirmed. The dynamic strain of blade is measured by utilizing telemetry technology. Finally, according to the design features of integral shroud, the tip-timing probe locations must be accurately confirmed in order to acquire the valid data. All probes are positioned along the radial direction of blades. The rotating vibration test of the bladed blisk has been carried out in the high-speed test rig. In order to validate the tip-timing measurement, all the results from the tip-timing, especially the resonant frequencies and damping ratios, are compared with results from the strain gauges with which only a few blades were equipped.


2018 ◽  
Vol 114 (3) ◽  
pp. 70a ◽  
Author(s):  
Bibiana Onoa ◽  
Shingo Fukuda ◽  
Masakazu Iwai ◽  
Krishna K. Niyogi ◽  
Carlos Bustamante

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Farid Al-Bender ◽  
Federico Colombo ◽  
Dominiek Reynaerts ◽  
Rodrigo Villavicencio ◽  
Tobias Waumans

This paper concerns the dynamic characterization of rubber O-rings used to introduce damping in high speed gas bearing systems. O-shaped rubber rings composed of high temperature rubber compounds are characterized in terms of stiffness and damping coefficients in the frequency range 100–800 Hz. Simple formulas with frequency independent coefficients were identified to express the viscoelastic properties of the O-rings. The formulas proposed approximate the stiffness and damping coefficients of O-rings of general size.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 130661-130668
Author(s):  
Chuan Ding ◽  
Yu Huang ◽  
Yuhui Zhu ◽  
Shuo Liu ◽  
Li Liu

Author(s):  
Bugra H. Ertas ◽  
Huageng Luo

The present work focuses on the dynamic characterization of oil-free wire mesh dampers. The research was aimed at determining nonlinear stiffness and damping coefficients while varying the excitation amplitude, excitation frequency, and static eccentricity. Force coefficients were extracted using a forced response method and also a transient vibration method. Due to the nonlinearity of the dampers, controlled amplitude single frequency excitation tests were required for the forced excitation method, whereas the transient response was analyzed using a Hilbert transform procedure. The experimental results showed that eccentricity has minimal influence on force coefficients, whereas increasing excitation amplitude and frequency yields decreasing stiffness and damping trends. In addition to the parameter identification tests, a rotating test was performed demonstrating high-speed damping capability of the oil-free wire mesh dampers to 40,000 rpm, which was also simulated using a nonlinear rotordynamic response to imbalance analysis.


Sign in / Sign up

Export Citation Format

Share Document