Comparison of Blade Tip Timing With Strain Gauge Data for Evaluation of Dynamic Characterization of Last Stage Blade With Interlocked Shroud for Steam Turbine

Author(s):  
Jiamin Zhang ◽  
Peng Shan ◽  
Kai Cheng ◽  
Dechao Ye

The tip-timing technology has been widely developed and has become an industry standard in aircraft engine and gas turbine over past decade. The main application of the tip-timing method is to verify safe operation of blades and monitor the health of blades. But tip-timing technology gets rarely used to the last stage blade of steam turbine. Particularly the blade is designed with an integral shroud, snubber and fir-tree root. The article mainly describes the process of identifying the dynamic characterization of last stage blade with an integral shroud and snubber by contactless measurements provided by tip-timing technology. Attention is focused on the comparison of tip-timing results with the results from strain gauge data. Firstly, the frequency response of the bladed blisk is calculated by using Computer-Aided-Engineering (CAE) technologies. Secondly, according to the results of finite element modal calculation, the location of strain gauge is confirmed. The dynamic strain of blade is measured by utilizing telemetry technology. Finally, according to the design features of integral shroud, the tip-timing probe locations must be accurately confirmed in order to acquire the valid data. All probes are positioned along the radial direction of blades. The rotating vibration test of the bladed blisk has been carried out in the high-speed test rig. In order to validate the tip-timing measurement, all the results from the tip-timing, especially the resonant frequencies and damping ratios, are compared with results from the strain gauges with which only a few blades were equipped.

Author(s):  
Tomas Misek ◽  
Zdenek Kubin ◽  
Karel Duchek

The 3000 rpm 48 inch blade for steam turbine has been developed with the application of new design features. The last stage moving blade was designed with integral cover, mid-span tie-boss connection, and fir-tree dovetail. Blades are continuously coupled by the blade untwist due to the centrifugal force, so vibration control and increased structural damping are provided. The last stage airfoil was optimized from view of minimization of its centrifugal force which helped to reach higher safety factors. The blade was well tuned in order to have eigen-frequencies safely away from possible excitation. Because of connection members, the number of the resonant vibration modes can be reduced by virtue of the vibration characteristics of the circumferentially continuous blades. In order to develop the 3000 rpm 48 inch blade, the latest analysis methods were applied to predict dynamic behavior of the bladed structure. Coupled rotor-blade analysis was also aim of the attention. To validate calculated results the verification measurement such as rotational vibration tests was carried out in the high-speed test rig. The test rotor was fitted with the actual full scale 48″ blades. Relation of the friction damping of the bladed structure on amount of excitation level was also monitored and evaluated.


Author(s):  
Bernard A. Couture ◽  
Leslie B. Keeling ◽  
Mark W. Kowalczyk

The HEAT™ (High Efficiency Advanced Technology) steam turbine utilizes high reaction technology [1], which is significantly influenced by the effectiveness of sealing between the stages. The thermal-mechanical analysis based clearance design and the combination of labyrinth sealing with abradable coatings offer an effective solution to minimize bucket and nozzle tip leakage through transient and steady state operation of the turbine. The aim of this paper is to describe the clearance design process and the development of abradable-labyrinth seal configurations. The paper describes extensive testing and detailed analysis conducted to evaluate seal properties and behaviors. Properties investigated included corrosion, erosion and in particular, rub characteristics. Rub behavior is investigated in a high temperature, high speed test apparatus designed to simulate clearance changes during transient periods of start-up, shutdown and hot re-start which often result in interference between the sealing components. This paper will discuss the method to predict differential rotor to stator movements and the resulting abradable incursion during the various operating transients. The seal tooth to coating contact is then simulated with component testing for multiple incursion modes (i.e. radial, axial and a combination of the two) and rates. The discussion will also include the application of the clearance design and sealing technology to a reaction type steam turbine.


2013 ◽  
Vol 535-536 ◽  
pp. 48-51 ◽  
Author(s):  
Rafael Celeghini Santiago ◽  
Marcilio Alves

The mechanical strength of a fiber-metal laminate is not so well explored at high strain rates, although its constituents are prone to exhibit such effects. In this paper, we describe an investigation of aluminium-fiber glass material using the Split Hopkinson bar device. We report on various experimental issues related to these tests, giving some emphasis to the use of high speed filming to obtain information on the specimen strain and strain rate.


Author(s):  
Panneer Selvam R. ◽  
Muthukannan Duraiselvam ◽  
Sanjay G. Barad ◽  
Dilip Kumar

Abstract Experimental Modal Analysis (EMA) is a conventional technique for establishing the modal parameters of the components. The modal parameters are the dynamic characteristics viz. frequency, mode shapes and damping that are used for assessing and validating the design predictions through correlation studies. For this task EMA technique is adopted to assess the dynamic characteristics of an additive manufactured (AM) turbine wheel of a turbocharger. Correlation studies are undertaken to validate the theoretical model developed. These Correlation studies ensured that there is no major deviations to proceed for high speed spin testing of this turbine wheel in simulated environment. The possible interference or resonances in the operating range are identified for safe operation of the test rotor.


Author(s):  
Ondrej Novak ◽  
Marek Bobcik ◽  
Martin Luxa ◽  
Jaroslav Fort ◽  
Bartolomej Rudas ◽  
...  

Recent trends in the electric energy market such as biomass, waste incineration or combined cycle power plants require innovative solutions in steam turbine design. Variable operating conditions cause significant changes in flow field surrounding the steam turbine last stage blades. Therefore, the enlargement of operating range for last stage blades presents new challenges in design of turbine cascades. Several turbine cascades were designed and analyzed by commercial and in-house software of CTU Prague. Selected profiles were experimentally validated in the high-speed wind tunnel for 2D cascade measurements of the Institute of Thermomechanics of the Czech Academy of Sciences which is equipped by an adjustable supersonic inlet nozzle, perforated inserts at side walls and adjustable perforated tailboard. Comparisons are presented of numerical results with optical and pneumatic measurements for a wide range of inlet and outlet Mach numbers for optimized hub and tip profile cascades.


2017 ◽  
Vol 9 (4) ◽  
pp. 1-7 ◽  
Author(s):  
Bandar Alshehri ◽  
Karim Dogheche ◽  
Sofiane Belahsene ◽  
Abderrahim Ramdane ◽  
Gilles Patriarche ◽  
...  

Author(s):  
A. Bessone ◽  
R. Guida ◽  
M. Marrè Brunenghi ◽  
S. Patrone ◽  
L. Carassale ◽  
...  

Abstract This paper is the first of a two-part publication that aims to experimentally evaluate, simulate and compare the aerodynamic and mechanical damping for a last stage steam turbine rotor blade at part load operation. Resulting strong off-design partial load regimes expose the last stage moving blade (LSMB) to the possible onset of aero-elastic instabilities, such as stalled and un-stalled flutter. This interaction can lead to asynchronous blade vibrations and then the risk of blade failures for high cycle fatigue. In this framework, it is necessary to develop and validate new tools for extending operating ranges, controlling non-synchronous phenomenon and supporting the design of new flutter resistant LSMB. To this end, a 3-stage downscaled steam turbine with a snubbered LSMB was designed by Ansaldo Energia and tested in the T10MW test facility of Doosan Skoda Power R&D Department within the FlexTurbine European project. The turbine was operated in a wet steam environment at very low volume flow conditions simulating different part load regimes. The steady flow field throughout the LSMB was characterized and the occurrence of flutter was investigated by inducing the blade resonance through an AC magnet excitation and measuring the overall damping. The results presented in this paper indicate that the blade always operates over the flutter stability margin validating this new blade design. In the second part of this work, the mechanical and aerodynamic contribution to the damping will be separated in order to validate the aerodynamic damping prediction of an upgraded CFD tool, already adopted in the design phase of the blade at design point.


Sign in / Sign up

Export Citation Format

Share Document