scholarly journals An Aquatic Wireless Biosensor for Electric Organ Discharge With an Integrated Analog Front End

2019 ◽  
Vol 19 (15) ◽  
pp. 6260-6269 ◽  
Author(s):  
Wei Tang ◽  
Paul M. Furth ◽  
Venkat Harish Nammi ◽  
Gaurav Panwar ◽  
Vicente Ibarra ◽  
...  
Author(s):  
Raja Krishnamoorthy ◽  
E. Kavitha ◽  
V. Beslin Geo ◽  
K.S.R. Radhika ◽  
C. Bharatiraja

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Xu ◽  
Xiang Cui ◽  
Huiyuan Zhang

AbstractThe electric eel is a unique species that has evolved three electric organs. Since the 1950s, electric eels have generally been assumed to use these three organs to generate two forms of electric organ discharge (EOD): high-voltage EOD for predation and defense and low-voltage EOD for electrolocation and communication. However, why electric eels evolved three electric organs to generate two forms of EOD and how these three organs work together to generate these two forms of EOD have not been clear until now. Here, we present the third form of independent EOD of electric eels: middle-voltage EOD. We suggest that every form of EOD is generated by one electric organ independently and reveal the typical discharge order of the three electric organs. We also discuss hybrid EODs, which are combinations of these three independent EODs. This new finding indicates that the electric eel discharge behavior and physiology and the evolutionary purpose of the three electric organs are more complex than previously assumed. The purpose of the middle-voltage EOD still requires clarification.


Author(s):  
Zu-Jia Lo ◽  
Bipasha Nath ◽  
Yuan-Chuan Wang ◽  
Yun-Jie Huang ◽  
Hui-Chun Huang ◽  
...  

Author(s):  
Antonio Vincenzo Radogna ◽  
Simonetta Capone ◽  
Luca Francioso ◽  
Pietro Aleardo Siciliano ◽  
Stefano D'Amico

2013 ◽  
Vol 475-476 ◽  
pp. 1633-1637
Author(s):  
Seung Yong Bae ◽  
Jong Do Lee ◽  
Eun Ju Choe ◽  
Gil Cho Ahn

This paper presents a low distortion analog front-end (AFE) circuit to process electret microphone output signal. A source follower is employed for the input buffer to interface electret microphone directly to the IC with level shifting. A single-ended to differential converter with output common-mode control is presented to compensate the common-mode variation resulted from gate to source voltage variation in the source follower. A replica stage is adopted to control the output bias voltage of the single-ended to differential converter. The prototype AFE circuit fabricated in a 0.35μm CMOS technology achieves 68.2dB peak SNDR and 79.9dB SFDR over an audio signal bandwidth of 20kHz with 2.5V supply while consuming 1.05mW.


2013 ◽  
Vol 109 (7) ◽  
pp. 1713-1723 ◽  
Author(s):  
Michael R. Markham ◽  
Leonard K. Kaczmarek ◽  
Harold H. Zakon

We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na+current ( INa) with extremely rapid recovery from inactivation (τrecov= 0.3 ms) allowing complete recovery of Na+current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K+current and a Na+-activated K+current ( IKNa), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased IKNais a function of enhanced Na+influx. Numerical simulations suggest that changing INamagnitude produces corresponding changes in AP amplitude and that KNachannels increase AP energy efficiency (10–30% less Na+influx/AP) over model cells with only voltage-gated K+channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na+channels and the novel use of KNachannels to maximize AP amplitude at a given Na+conductance.


Sign in / Sign up

Export Citation Format

Share Document