Development of All-SiC Absolute Pressure Sensor Based on Sealed Cavity Structure

2021 ◽  
Vol 21 (24) ◽  
pp. 27308-27314
Author(s):  
Haiping Shang ◽  
Baohua Tian ◽  
Dahai Wang ◽  
Yang Liu ◽  
Weibing Wang
Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 379
Author(s):  
Baohua Tian ◽  
Haiping Shang ◽  
Lihuan Zhao ◽  
Dahai Wang ◽  
Yang Liu ◽  
...  

The hermeticity performance of the cavity structure has an impact on the long-term stability of absolute pressure sensors for high temperature applications. In this paper, a bare silicon carbide (SiC) wafer was bonded to a patterned SiC substrate with shallow grooves based on a room temperature direct bonding process to achieve a sealed cavity structure. Then the hermeticity analysis on the SiC cavity structure was performed. The microstructure observation demonstrates that the SiC wafers are tightly bonded and the cavities remain intact. Moreover, the tensile testing indicates that the tensile strength of bonding interface is ~8.01 MPa. Moreover, the quantitative analysis on the airtightness of cavity structure through leakage detection shows a helium leak rate of ~1.3 × 10−10 Pa⋅m3/s, which satisfies the requirement of the specification in the MIL-STD-883H. The cavity structure can also avoid an undesirable deep etching process and the problem caused by the mismatch of thermal expansion coefficients, which can be potentially further developed into an all-SiC piezoresistive pressure sensor employable for high temperature applications.


Author(s):  
Mehmet Mersinligil ◽  
Jean-Franc¸ois Brouckaert ◽  
Julien Desset

This paper presents the first experimental engine and test rig results obtained from a fast response cooled total pressure probe. The first objective of the probe design was to favor continuous immersion of the probe into the engine to obtain time series of pressure with a high bandwidth and therefore statistically representative average fluctuations at the blade passing frequency. The probe is water cooled by a high pressure cooling system and uses a conventional piezo-resistive pressure sensor which yields therefore both time-averaged and time-resolved pressures. The initial design target was to gain the capability of performing measurements at the temperature conditions typically found at high pressure turbine exit (1100–1400K) with a bandwidth of at least 40kHz and in the long term at combustor exit (2000K or higher). The probe was first traversed at the turbine exit of a Rolls-Royce Viper turbojet engine, at exhaust temperatures around 750 °C and absolute pressure of 2.1bars. The probe was able to resolve the high blade passing frequency (≈23kHz) and several harmonics up to 100kHz. Besides the average total pressure distributions from the radial traverses, phase-locked averages and random unsteadiness are presented. The probe was also used in a virtual three-hole mode yielding unsteady yaw angle, static pressure and Mach number. The same probe was used for measurements in a Rolls-Royce intermediate pressure burner rig. Traverses were performed inside the flame tube of a kerosene burner at temperatures above 1600 °C. The probe successfully measured the total pressure distribution in the flame tube and typical frequencies of combustion instabilities were identified during rumble conditions. The cooling performance of the probe is compared to estimations at the design stage and found to be in good agreement. The frequency response of the probe is compared to cold shock tube results and a significant increase in the natural frequency of the line-cavity system formed by the conduction cooled screen in front of the miniature pressure sensor were observed.


2006 ◽  
Vol 34 ◽  
pp. 393-398 ◽  
Author(s):  
Kang Ryeol Lee ◽  
Kunnyun Kim ◽  
Hyo-Derk Park ◽  
Yong Kook Kim ◽  
Seung-Woo Choi ◽  
...  

2014 ◽  
Vol 14 (3) ◽  
pp. 808-815 ◽  
Author(s):  
Xiuchun Hao ◽  
Sinya Tanaka ◽  
Atsuhiko Masuda ◽  
Jun Nakamura ◽  
Koichi Sudoh ◽  
...  

2008 ◽  
Vol 124 (5) ◽  
pp. 2668
Author(s):  
Itzhak Sapir

Sign in / Sign up

Export Citation Format

Share Document