Real-time rail fault diagnosis based on vibration signal analysis and second-order sinusoidal model

2021 ◽  
pp. 1-1
Author(s):  
Yan Song ◽  
Lidong Huang ◽  
Panfeng Xu ◽  
Min Wan
2014 ◽  
Vol 940 ◽  
pp. 136-139
Author(s):  
Ren Bin Zhou ◽  
Yong Feng Zhang ◽  
Jie Min Yang ◽  
Feng Ling

As a universal component connection and power transmission gear box, is widely used in the modern industrial equipment, but also an easy failure parts, has a great influence on the running state of the working performance of the whole machine. This paper first analyzes the gear box fault form and characteristics, the gear box fault diagnosis method based on vibration signal analysis, and analysis of the vibration signal processing method for gear vibration signal analysis in time domain, including parameters, resonance demodulation method and cepstrum analysis method. Then using Visual C + + language and data acquisition card for real-time acquisition of gearbox vibration data software, including parameter setting, data acquisition module, signal real-time display module and data storage module. The data acquisition program is developed, the actual acquisition of gearbox vibration data of gear fault and bearing fault, and analyzed.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 3409-3435 ◽  
Author(s):  
Issam Attoui ◽  
Brahim Oudjani ◽  
Nadir Boutasseta ◽  
Nadir Fergani ◽  
Mohammed-Salah Bouakkaz ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 1286-1289 ◽  
Author(s):  
Jie Shi ◽  
Xing Wu ◽  
Nan Pan ◽  
Sen Wang ◽  
Jun Zhou

In order to monitor the operation state and implement fault diagnosis of rolling bearing in rotating machinery, this paper presents a method of fault diagnosis of rolling bearing, which is based on EMD and resonance demodulation. Using EMD to decompose the signal, which comes from QPZZ-II experimental station, the components of intrinsic mode function (IMF) will be obtained. Then, calculating the correlation coefficient of each IMF component, the highest correlation coefficient of IMF component will be analyzed by resonance demodulation. Finally, the experimental results show that the method can accurately identify and diagnose the running state and bearing fault type.


2011 ◽  
Vol 199-200 ◽  
pp. 899-904 ◽  
Author(s):  
Zhen Nan Han ◽  
Jian Xin Gao

A new method for gear local fault diagnosis based on vibration signal analysis is presented in this paper by using the concept of instantaneous frequency. The data from the physical simulation are used to detect the change in the instantaneous frequency and meshing vibration energy of the gear tooth fault by Empirical Mode Decomposition and Hilbert Huang Transformation (EMD-HHT). It is verified that method is effective by rig testing of geared system.


Sign in / Sign up

Export Citation Format

Share Document