Urban Land Cover Classification With Airborne Hyperspectral Data: What Features to Use?

Author(s):  
Xiaohua Tong ◽  
Huan Xie ◽  
Qihao Weng
Author(s):  
G. Hegde ◽  
J. Mohammed Ahamed ◽  
R. Hebbar ◽  
U. Raj

Urban land cover classification using remote sensing data is quite challenging due to spectrally and spatially complex urban features. The present study describes the potential use of hyperspectral data for urban land cover classification and its comparison with multispectral data. EO-1 Hyperion data of October 05, 2012 covering parts of Bengaluru city was analyzed for land cover classification. The hyperspectral data was initially corrected for atmospheric effects using MODTRAN based FLAASH module and Minimum Noise Fraction (MNF) transformation was applied to reduce data dimensionality. The threshold Eigen value of 1.76 in VNIR region and 1.68 in the SWIR region was used for selection of 145 stable bands. Advanced per pixel classifiers <i>viz.</i>, Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) were used for general urban land cover classification. Accuracy assessment of the classified data revealed that SVM was quite superior (82.4 per cent) for urban land cover classification as compared to SAM (67.1 per cent). Selecting training samples using end members significantly improved the classification accuracy by 20.1 per cent in SVM. The land cover classification using multispectral LISS-III data using SVM showed lower accuracy mainly due to limitation of spectral resolution. The study indicated the requirement of additional narrow bands for achieving reasonable classification accuracy of urban land cover. Future research is focused on generating hyperspectral library for different urban features.


2016 ◽  
Vol 3 (2) ◽  
pp. 127
Author(s):  
Jati Pratomo ◽  
Triyoga Widiastomo

The usage of Unmanned Aerial Vehicle (UAV) has grown rapidly in various fields, such as urban planning, search and rescue, and surveillance. Capturing images from UAV has many advantages compared with satellite imagery. For instance, higher spatial resolution and less impact from atmospheric variations can be obtained. However, there are difficulties in classifying urban features, due to the complexity of the urban land covers. The usage of Maximum Likelihood Classification (MLC) has limitations since it is based on the assumption of the normal distribution of pixel values, where, in fact, urban features are not normally distributed. There are advantages in using the Markov Random Field (MRF) for urban land cover classification as it assumes that neighboring pixels have a higher probability to be classified in the same class rather than a different class. This research aimed to determine the impact of the smoothness (λ) and the updating temperature (Tupd) on the accuracy result (κ) in MRF. We used a UAV VHIR sized 587 square meters, with six-centimetre resolution, taken in Bogor Regency, Indonesia. The result showed that the kappa value (κ) increases proportionally with the smoothness (λ) until it reaches the maximum (κ), then the value drops. The usage of higher (Tupd) has resulted in better (κ) although it also led to a higher Standard Deviations (SD). Using the most optimal parameter, MRF resulted in slightly higher (κ) compared with MLC.


2020 ◽  
Vol 12 (2) ◽  
pp. 311 ◽  
Author(s):  
Chun Liu ◽  
Doudou Zeng ◽  
Hangbin Wu ◽  
Yin Wang ◽  
Shoujun Jia ◽  
...  

Urban land cover classification for high-resolution images is a fundamental yet challenging task in remote sensing image analysis. Recently, deep learning techniques have achieved outstanding performance in high-resolution image classification, especially the methods based on deep convolutional neural networks (DCNNs). However, the traditional CNNs using convolution operations with local receptive fields are not sufficient to model global contextual relations between objects. In addition, multiscale objects and the relatively small sample size in remote sensing have also limited classification accuracy. In this paper, a relation-enhanced multiscale convolutional network (REMSNet) method is proposed to overcome these weaknesses. A dense connectivity pattern and parallel multi-kernel convolution are combined to build a lightweight and varied receptive field sizes model. Then, the spatial relation-enhanced block and the channel relation-enhanced block are introduced into the network. They can adaptively learn global contextual relations between any two positions or feature maps to enhance feature representations. Moreover, we design a parallel multi-kernel deconvolution module and spatial path to further aggregate different scales information. The proposed network is used for urban land cover classification against two datasets: the ISPRS 2D semantic labelling contest of Vaihingen and an area of Shanghai of about 143 km2. The results demonstrate that the proposed method can effectively capture long-range dependencies and improve the accuracy of land cover classification. Our model obtains an overall accuracy (OA) of 90.46% and a mean intersection-over-union (mIoU) of 0.8073 for Vaihingen and an OA of 88.55% and a mIoU of 0.7394 for Shanghai.


Sign in / Sign up

Export Citation Format

Share Document