Estimation of Vegetation Parameters of Water Cloud Model for Global Soil Moisture Retrieval Using Time-Series L-Band Aquarius Observations

Author(s):  
Chenzhou Liu ◽  
Jiancheng Shi
2022 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Yaqing Gou ◽  
Casey M. Ryan ◽  
Johannes Reiche

Soil moisture effects limit radar-based aboveground biomass carbon (AGBC) prediction accuracy as well as lead to stripes between adjacent paths in regional mosaics due to varying soil moisture conditions on different acquisition dates. In this study, we utilised the semi-empirical water cloud model (WCM) to account for backscattering from soil moisture in AGBC retrieval from L-band radar imagery in central Mozambique, where woodland ecosystems dominate. Cross-validation results suggest that (1) the standard WCM effectively accounts for soil moisture effects, especially for areas with AGBC ≤ 20 tC/ha, and (2) the standard WCM significantly improved the quality of regional AGBC mosaics by reducing the stripes between adjacent paths caused by the difference in soil moisture conditions between different acquisition dates. By applying the standard WCM, the difference in mean predicted AGBC for the tested path with the largest soil moisture difference was reduced by 18.6%. The WCM is a valuable tool for AGBC mapping by reducing prediction uncertainties and striping effects in regional mosaics, especially in low-biomass areas including African woodlands and other woodland and savanna regions. It is repeatable for recent L-band data including ALOS-2 PALSAR-2, and upcoming SAOCOM and NISAR data.


2020 ◽  
pp. 1-20
Author(s):  
Zhen Wang ◽  
Tianjie Zhao ◽  
Jianxiu Qiu ◽  
Xuesheng Zhao ◽  
Rui Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (19) ◽  
pp. 3889
Author(s):  
Chunfeng Ma ◽  
Shuguo Wang ◽  
Zebin Zhao ◽  
Hanqing Ma

The release of high-spatiotemporal-resolution Sentinel-1 Synthetic Aperture Radar (SAR) data to the public has provided an unprecedented opportunity to map soil moisture at watershed and agricultural field scales. However, the existing retrieval algorithms fail to derive soil moisture with expected accuracy. Insufficient understanding of the effects of soil and vegetation parameters on the backscatters is an important reason for this failure. To this end, we present a Sensitivity Analysis (SA) to quantify the effects of parameters on the dual-polarized backscatters of Sentinel-1 based on a Water Cloud Model (WCM) and multiple global SA methods. The identification of the incidence angle and polarization of Sentinel-1 and the description scheme of vegetation parameters (A, B and α) in WCM are especially emphasized in this analysis towards an optimal estimation of parameters. Multiple SA methods derive identical parameter importance ranks, indicating that a highly reasonable and reliable SA is performed. Comparison between two existing vegetation description schemes shows that the scheme using Vegetation Water Content (VWC) outperforms the scheme combing particle moisture content and VWC. Surface roughness, soil moisture, VWC, and B, are most sensitive on the backscatters. Variation of parameter sensitivity indices with incidence angle at different polarizations indicates that VV- and VH- polarized backscatters at small incidence angles are the optimal options for soil moisture and surface roughness estimation, respectively, while VV-polarized backscatter at larger incidence angles is well-suited for VWC and B estimation and HH-polarized backscatter is well suited for roughness estimation. This analysis improves the understanding of the effects of vegetated surface parameters on multi-angle and multi-polarized backscatters of Sentinel-1 SAR, informing improvement in SAR-based soil moisture retrieval.


2021 ◽  
Author(s):  
Anna Balenzano ◽  
Giuseppe Satalino ◽  
Francesco Lovergine ◽  
Davide Palmisano ◽  
Francesco Mattia ◽  
...  

<p>One of the limitations of presently available Synthetic Aperture Radar (SAR) surface soil moisture (SSM) products is their moderated temporal resolution (e.g., 3-4 days) that is non optimal for several applications, as most user requirements point to a temporal resolution of 1-2 days or less. A possible path to tackle this issue is to coordinate multi-mission SAR acquisitions with a view to the future Copernicus Sentinel-1 (C&D and Next Generation) and L-band Radar Observation System for Europe (ROSE-L).</p><p>In this respect, the recent agreement between the Japanese (JAXA) and European (ESA) Space Agencies on the use of SAR Satellites in Earth Science and Applications provides a framework to develop and validate multi-frequency and multi-platform SAR SSM products. In 2019 and 2020, to support insights on the interoperability between C- and L-band SAR observations for SSM retrieval, Sentinel-1 and ALOS-2 systematic acquisitions over the TERENO (Terrestrial Environmental Observatories) Selhausen (Germany) and Apulian Tavoliere (Italy) cal/val sites were gathered. Both sites are well documented and equipped with hydrologic networks.</p><p>The objective of this study is to investigate the integration of multi-frequency SAR measurements for a consistent and harmonized SSM retrieval throughout the error characterization of a combined C- and L-band SSM product. To this scope, time series of Sentinel-1 IW and ALOS-2 FBD data acquired over the two sites will be analysed. The short time change detection (STCD) algorithm, developed, implemented and recently assessed on Sentinel-1 data [e.g., Balenzano et al., 2020; Mattia et al., 2020], will be tailored to the ALOS-2 data. Then, the time series of SAR SSM maps from each SAR system will be derived separately and aggregated in an interleaved SSM product. Furthermore, it will be compared against in situ SSM data systematically acquired by the ground stations deployed at both sites. The study will assess the interleaved SSM product and evaluate the homogeneous quality of C- and L-band SAR SSM maps.</p><p> </p><p> </p><p>References</p><p>Balenzano. A., et al., “Sentinel-1 soil moisture at 1km resolution: a validation study”, submitted to Remote Sensing of Environment (2020).</p><p>Mattia, F., A. Balenzano, G. Satalino, F. Lovergine, A. Loew, et al., “ESA SEOM Land project on Exploitation of Sentinel-1 for Surface Soil Moisture Retrieval at High Resolution,” final report, contract number 4000118762/16/I-NB, 2020.</p>


2017 ◽  
Vol 55 (6) ◽  
pp. 3186-3193 ◽  
Author(s):  
Jeffrey D. Ouellette ◽  
Joel T. Johnson ◽  
Anna Balenzano ◽  
Francesco Mattia ◽  
Giuseppe Satalino ◽  
...  

2020 ◽  
Vol 14 (9) ◽  
pp. 2809-2817
Author(s):  
Julie Z. Miller ◽  
David G. Long ◽  
Kenneth C. Jezek ◽  
Joel T. Johnson ◽  
Mary J. Brodzik ◽  
...  

Abstract. Enhanced-resolution L-band brightness temperature (TB) image time series generated from observations collected over the Greenland Ice Sheet by NASA's Soil Moisture Active Passive (SMAP) satellite are used to map Greenland's perennial firn aquifers from space. Exponentially decreasing L-band TB signatures are correlated with perennial firn aquifer areas identified via the Center for Remote Sensing of Ice Sheets (CReSIS) Multi-Channel Coherent Radar Depth Sounder (MCoRDS) that was flown by NASA's Operation IceBridge (OIB) campaign. An empirical algorithm to map extent is developed by fitting these signatures to a set of sigmoidal curves. During the spring of 2016, perennial firn aquifer areas are found to extend over ∼66 000 km2.


Sign in / Sign up

Export Citation Format

Share Document