scholarly journals Global Sensitivity Analysis of a Water Cloud Model toward Soil Moisture Retrieval over Vegetated Agricultural Fields

2021 ◽  
Vol 13 (19) ◽  
pp. 3889
Author(s):  
Chunfeng Ma ◽  
Shuguo Wang ◽  
Zebin Zhao ◽  
Hanqing Ma

The release of high-spatiotemporal-resolution Sentinel-1 Synthetic Aperture Radar (SAR) data to the public has provided an unprecedented opportunity to map soil moisture at watershed and agricultural field scales. However, the existing retrieval algorithms fail to derive soil moisture with expected accuracy. Insufficient understanding of the effects of soil and vegetation parameters on the backscatters is an important reason for this failure. To this end, we present a Sensitivity Analysis (SA) to quantify the effects of parameters on the dual-polarized backscatters of Sentinel-1 based on a Water Cloud Model (WCM) and multiple global SA methods. The identification of the incidence angle and polarization of Sentinel-1 and the description scheme of vegetation parameters (A, B and α) in WCM are especially emphasized in this analysis towards an optimal estimation of parameters. Multiple SA methods derive identical parameter importance ranks, indicating that a highly reasonable and reliable SA is performed. Comparison between two existing vegetation description schemes shows that the scheme using Vegetation Water Content (VWC) outperforms the scheme combing particle moisture content and VWC. Surface roughness, soil moisture, VWC, and B, are most sensitive on the backscatters. Variation of parameter sensitivity indices with incidence angle at different polarizations indicates that VV- and VH- polarized backscatters at small incidence angles are the optimal options for soil moisture and surface roughness estimation, respectively, while VV-polarized backscatter at larger incidence angles is well-suited for VWC and B estimation and HH-polarized backscatter is well suited for roughness estimation. This analysis improves the understanding of the effects of vegetated surface parameters on multi-angle and multi-polarized backscatters of Sentinel-1 SAR, informing improvement in SAR-based soil moisture retrieval.

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 135
Author(s):  
Min Zhang ◽  
Fengkai Lang ◽  
Nanshan Zheng

The objective of this paper is to propose a combined approach for the high-precision mapping of soil moisture during the wheat growth cycle based on synthetic aperture radar (SAR) (Radarsat-2) and optical satellite data (Landsat-8). For this purpose, the influence of vegetation was removed from the total backscatter by using the modified water cloud model (MWCM), which takes the vegetation fraction (fveg) into account. The VV/VH polarization radar backscattering coefficients database was established by a numerical simulation based on the advanced integrated equation model (AIEM) and the cross-polarized ratio of the Oh model. Then the empirical relationship between the bare soil backscattering coefficient and both the soil moisture and the surface roughness was developed by regression analysis. The surface roughness in this paper was described by using the effective roughness parameter and the combined roughness form. The experimental results revealed that using effective roughness as the model input instead of in-situ measured roughness can obtain soil moisture with high accuracy and effectively avoid the uncertainty of roughness measurement. The accuracy of soil moisture inversion could be improved by introducing vegetation fraction on the basis of the water cloud model (WCM). There was a good correlation between the estimated soil moisture and the observed values, with a root mean square error (RMSE) of about 4.14% and the coefficient of determination (R2) about 0.7390.


2020 ◽  
Vol 12 (14) ◽  
pp. 2303 ◽  
Author(s):  
Chunfeng Ma ◽  
Xin Li ◽  
Matthew F. McCabe

Estimating soil moisture based on synthetic aperture radar (SAR) data remains challenging due to the influences of vegetation and surface roughness. Here we present an algorithm that simultaneously retrieves soil moisture, surface roughness and vegetation water content by jointly using high-resolution Sentinel-1 SAR and Sentinel-2 multispectral imagery, with an application directed towards the provision of information at the precision agricultural scale. Sentinel-2-derived vegetation water indices are investigated and used to quantify the backscatter resulting from the vegetation canopy. The proposed algorithm then inverts the water cloud model to simultaneously estimate soil moisture and surface roughness by minimizing a cost function constructed by model simulations and SAR observations. To examine the performance of VV- and VH-polarized backscatters on soil moisture retrievals, three retrieval schemes are explored: a single channel algorithm using VV (SCA-VV) and VH (SCA-VH) polarizations and a dual channel algorithm using both VV and VH polarizations (DCA-VVVH). An evaluation of the approach using a combination of a cosmic-ray soil moisture observing system (COSMOS) and Soil Climate Analysis Network measurements over Nebraska shows that the SCA-VV scheme yields good agreement at both the COSMOS footprint and single-site scales. The features of the algorithms that have the most impact on the retrieval accuracy include the vegetation water content estimation scheme, parameters of the water cloud model and the specification of initial ranges of soil moisture and roughness, all of which are comprehensively analyzed and discussed. Through careful consideration and selection of these factors, we demonstrate that the proposed SCA-VV approach can provide reasonable soil moisture retrievals, with RMSE ranging from 0.039 to 0.078 m3/m3 and R2 ranging from 0.472 to 0.665, highlighting the utility of SAR for application at the precision agricultural scale.


2021 ◽  
Vol 13 (8) ◽  
pp. 1463
Author(s):  
Susan C. Steele-Dunne ◽  
Sebastian Hahn ◽  
Wolfgang Wagner ◽  
Mariette Vreugdenhil

The TU Wien Soil Moisture Retrieval (TUW SMR) approach is used to produce several operational soil moisture products from the Advanced Scatterometer (ASCAT) on the Metop series of satellites as part of the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF). The incidence angle dependence of backscatter is described by a second-order Taylor polynomial, the coefficients of which are used to normalize ASCAT observations to the reference incidence angle of 40∘ and for correcting vegetation effects. Recently, a kernel smoother was developed to estimate the coefficients dynamically, in order to account for interannual variability. In this study, we used the kernel smoother for estimating these coefficients, where we distinguished for the first time between their two uses, meaning that we used a short and fixed window width for the backscatter normalisation while we tested different window widths for optimizing the vegetation correction. In particular, we investigated the impact of using the dynamic vegetation parameters on soil moisture retrieval. We compared soil moisture retrievals based on the dynamic vegetation parameters to those estimated using the current operational approach by examining their agreement, in terms of the Pearson correlation coefficient, unbiased RMSE and bias with respect to in situ soil moisture. Data from the United States Climate Research Network were used to study the influence of climate class and land cover type on performance. The sensitivity to the kernel smoother half-width was also investigated. Results show that estimating the vegetation parameters with the kernel smoother can yield an improvement when there is interannual variability in vegetation due to a trend or a change in the amplitude or timing of the seasonal cycle. However, using the kernel smoother introduces high-frequency variability in the dynamic vegetation parameters, particularly for shorter kernel half-widths.


2021 ◽  
Author(s):  
Isabella Pfeil ◽  
Wolfgang Wagner ◽  
Sebastian Hahn ◽  
Raphael Quast ◽  
Susan Steele-Dunne ◽  
...  

<div> <p>Soil moisture (SM) datasets retrieved from the advanced scatterometer (ASCAT) sensor are well established and widely used for various hydro-meteorological, agricultural, and climate monitoring applications. Besides SM, ASCAT is sensitive to vegetation structure and vegetation water content, enabling the retrieval of vegetation optical depth (VOD; 1). The challenge in the retrieval of SM and vegetation products from ASCAT observations is to separate the two effects. As described by Wagner et al. (2), SM and vegetation affect the relation between backscatter and incidence angle differently.  At high incidence angles, the response from bare soil and thus the sensitivity to SM conditions is significantly weaker than at low incidence angles, leading to decreasing backscatter with increasing incidence angle. The presence of vegetation on the other hand decreases the backscatter dependence on the incidence angle. The dependence of backscatter on the incidence angle can be described by a second-order Taylor polynomial based on a slope and a curvature coefficient. It was found empirically that SM conditions have no significant effect on the steepness of the slope, and that therefore, SM and vegetation effects can be separated using the slope (2).  This is a major assumption in the TU Wien soil moisture retrieval algorithm used in several operational soil moisture products. However, recent findings by Quast et al. (3) using a first-order radiative transfer model for the inversion of soil and vegetation parameters from scatterometer observations indicate that SM may influence the slope, as the SM-induced backscatter increase is more pronounced at low incidence angles. </p> </div><div> <div> <p>The aim of this analysis is to revisit the assumption that SM does not affect the slope of the backscatter incidence angle relations by investigating if short-term variability, observed in ASCAT slope timeseries on top of the seasonal vegetation cycle, is caused by SM. We therefore compare timeseries and anomalies of the ASCAT slope to air temperature, rainfall and SM from the ERA5-Land dataset. We carry out the analysis in a humid continental climate (Austria) and a Mediterranean climate study region (Portugal). First results show significant negative correlations between slope and SM anomalies. However, correlations between temperature and slope anomalies are of a similar magnitude, albeit positive, which may reflect temperature-induced vegetation dynamics. The fact that temperature and SM are strongly correlated with each other complicates the interpretation of the results. Thus, our second approach is to investigate daily slope values and their change between dry and wet days. The results of this study shall help to quantify the uncertainties in ASCAT SM products caused by the potentially inadequate assumption of a SM-independent slope. </p> </div> <div> <p> </p> </div> <div> <p>(1) Vreugdenhil, Mariette, et al. "Analyzing the vegetation parameterization in the TU-Wien ASCAT soil moisture retrieval." IEEE Transactions on Geoscience and Remote Sensing 54.6 (2016): 3513-3531.</p> <p><span>(2) Wagner, Wolfgang, et al. "Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer." IEEE Transactions on Geoscience and Remote Sensing 37.1 (1999): 206-216. </span></p> </div> <div> <p>(3) Quast, Raphael, et al. "A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations." Remote Sensing 11.3 (2019): 285.</p> </div> </div>


2022 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Yaqing Gou ◽  
Casey M. Ryan ◽  
Johannes Reiche

Soil moisture effects limit radar-based aboveground biomass carbon (AGBC) prediction accuracy as well as lead to stripes between adjacent paths in regional mosaics due to varying soil moisture conditions on different acquisition dates. In this study, we utilised the semi-empirical water cloud model (WCM) to account for backscattering from soil moisture in AGBC retrieval from L-band radar imagery in central Mozambique, where woodland ecosystems dominate. Cross-validation results suggest that (1) the standard WCM effectively accounts for soil moisture effects, especially for areas with AGBC ≤ 20 tC/ha, and (2) the standard WCM significantly improved the quality of regional AGBC mosaics by reducing the stripes between adjacent paths caused by the difference in soil moisture conditions between different acquisition dates. By applying the standard WCM, the difference in mean predicted AGBC for the tested path with the largest soil moisture difference was reduced by 18.6%. The WCM is a valuable tool for AGBC mapping by reducing prediction uncertainties and striping effects in regional mosaics, especially in low-biomass areas including African woodlands and other woodland and savanna regions. It is repeatable for recent L-band data including ALOS-2 PALSAR-2, and upcoming SAOCOM and NISAR data.


2020 ◽  
Vol 12 (1) ◽  
pp. 183 ◽  
Author(s):  
Chenyang Xu ◽  
John J. Qu ◽  
Xianjun Hao ◽  
Di Wu

Surface soil moisture (SSM), the average water content of surface soil (up to 5 cm depth), plays a key role in the energy exchange within the ecosystem. We estimated SSM in areas with vegetation cover (grassland) by combining microwave and optical satellite measurements in the central Tibetan Plateau (TP) in 2015. We exploited TERRA moderate resolution imaging spectroradiometer (MODIS) and Sentinel-1A synthetic aperture radar (SAR) observations to estimate SSM through a simplified water-cloud model (sWCM). This model considers the impact of vegetation water content (VWC) to SSM retrieval by integrating the vegetation index (VI), the normalized difference water index (NDWI), or the normalized difference infrared index (NDII). Sentinel-1 SAR C-band backscattering coefficients, incidence angle, and NDWI/NDII were assimilated in the sWCM to monitor SSM. The soil moisture and temperature monitoring network on the central TP (CTP-SMTMN) measures SSM within the study area, and ground measurements were applied to train and validate the model. Via the proposed methods, we estimated the SSM in vegetated area with an R2 of 0.43 and a ubRMSE of 0.06 m3/m3 when integrating the NDWI and with an R2 of 0.45 and a ubRMSE of 0.06 m3/m3 when integrating the NDII.


Sign in / Sign up

Export Citation Format

Share Document