Assessment of Different Vegetation Parameters for Parameterizing the Coupled Water Cloud Model and Advanced Integral Equation Model for Soil Moisture Retrieval Using Time Series Sentinel-1A Data

2019 ◽  
Vol 85 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Long Wang ◽  
Binbin He ◽  
Xiaojing Bai ◽  
Minfeng Xing
2021 ◽  
Vol 13 (19) ◽  
pp. 3889
Author(s):  
Chunfeng Ma ◽  
Shuguo Wang ◽  
Zebin Zhao ◽  
Hanqing Ma

The release of high-spatiotemporal-resolution Sentinel-1 Synthetic Aperture Radar (SAR) data to the public has provided an unprecedented opportunity to map soil moisture at watershed and agricultural field scales. However, the existing retrieval algorithms fail to derive soil moisture with expected accuracy. Insufficient understanding of the effects of soil and vegetation parameters on the backscatters is an important reason for this failure. To this end, we present a Sensitivity Analysis (SA) to quantify the effects of parameters on the dual-polarized backscatters of Sentinel-1 based on a Water Cloud Model (WCM) and multiple global SA methods. The identification of the incidence angle and polarization of Sentinel-1 and the description scheme of vegetation parameters (A, B and α) in WCM are especially emphasized in this analysis towards an optimal estimation of parameters. Multiple SA methods derive identical parameter importance ranks, indicating that a highly reasonable and reliable SA is performed. Comparison between two existing vegetation description schemes shows that the scheme using Vegetation Water Content (VWC) outperforms the scheme combing particle moisture content and VWC. Surface roughness, soil moisture, VWC, and B, are most sensitive on the backscatters. Variation of parameter sensitivity indices with incidence angle at different polarizations indicates that VV- and VH- polarized backscatters at small incidence angles are the optimal options for soil moisture and surface roughness estimation, respectively, while VV-polarized backscatter at larger incidence angles is well-suited for VWC and B estimation and HH-polarized backscatter is well suited for roughness estimation. This analysis improves the understanding of the effects of vegetated surface parameters on multi-angle and multi-polarized backscatters of Sentinel-1 SAR, informing improvement in SAR-based soil moisture retrieval.


Author(s):  
Xuerui Wu ◽  
Shuanggen Jin

GNSS have been widely used in navigation, positioning and timing. Nowadays, the multipath errors previously considered detrimental may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), e.g. GPS- Multipath Reflectometry (GPS-MR). In this paper, a new element describing bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model linking the GPS observables (SNR, phase and pseudorange) with detailed vegetation parameters, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that wheat will decrease the amplitudes of GPS multipath observables, if we increase the vegetation moisture contents or the scatters sizes (stem or leaf), the amplitudes of GPS multipath observables (SNR, phase and code) decrease. Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with published results for environmental parameter detections with GPS-MR.


2022 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Yaqing Gou ◽  
Casey M. Ryan ◽  
Johannes Reiche

Soil moisture effects limit radar-based aboveground biomass carbon (AGBC) prediction accuracy as well as lead to stripes between adjacent paths in regional mosaics due to varying soil moisture conditions on different acquisition dates. In this study, we utilised the semi-empirical water cloud model (WCM) to account for backscattering from soil moisture in AGBC retrieval from L-band radar imagery in central Mozambique, where woodland ecosystems dominate. Cross-validation results suggest that (1) the standard WCM effectively accounts for soil moisture effects, especially for areas with AGBC ≤ 20 tC/ha, and (2) the standard WCM significantly improved the quality of regional AGBC mosaics by reducing the stripes between adjacent paths caused by the difference in soil moisture conditions between different acquisition dates. By applying the standard WCM, the difference in mean predicted AGBC for the tested path with the largest soil moisture difference was reduced by 18.6%. The WCM is a valuable tool for AGBC mapping by reducing prediction uncertainties and striping effects in regional mosaics, especially in low-biomass areas including African woodlands and other woodland and savanna regions. It is repeatable for recent L-band data including ALOS-2 PALSAR-2, and upcoming SAOCOM and NISAR data.


Author(s):  
W. Wagner ◽  
C. Reimer ◽  
B. Bauer-Marschallinger ◽  
M. Enenkel ◽  
S. Hahn ◽  
...  

Active microwave sensors operating at lower microwave frequencies in the range from 1 to 10 GHz provide backscatter measurements that are sensitive to the moisture content of the soil. Thanks to a series of European C-band (5.3 GHz) scatterometers, which were first flown on board of the European Remote Sensing satellites ERS-1 and ERS-2, and later on board of MetOp-A and MetOp -B, we are now in the possession of a long-term soil moisture time series starting in 1991. The creation of globally consistent long-term soil moisture time series is a challenging task. The TU-Wien soil moisture algorithm is adopted to tackle these challenges. In this paper we present two methodologies that were developed to ensure radiometric stability of the European C-band scatterometers. The objective of sensor intra-calibration is to monitor and correct for radiometric instabilities within one scatterometer mission, while sensor inter-calibration aims to remove radiometric differences across several missions. In addition, a novel vegetation modelling approach is presented that enables the estimation of vegetation parameters for each day across several years to account for yearly to longer-term changes in vegetation phenology and land cover.


Sign in / Sign up

Export Citation Format

Share Document